«Бионика» – слово, которое имеет греческие корни, в переводе означает «живущий». Эта наука занимается изучением разных методов организации живой природы в области промышленности.

Бионика в строительстве

Первые попытки использовать природные формы в строительстве предпринял еще испанский архитектор Антонио Гауди в 19 веке. Заказчик Эусебио Гуэль давно мечтал «о практичном здоровом доме с красивыми формами». Гауди справился с задачей виртуозно. Он втиснул в узкое пространство (18 на 22 метра) особняк, напоминающий одновременно мечеть и венецианское палаццо с просторным цокольным этажом, каретным двором и конюшнями. За серым мраморным фасадом дворца Гуэля – роскошные интерьеры. На отделку денег не жалели: черное дерево, палисандр, черепаховый панцирь, слоновая кость, одна комната облицована эвкалиптом, другая – буком, резные потолки с накладными листьями из золота и серебра. Именно здесь Гауди впервые превратил кровлю с дымоходами и вентиляционными трубами в «сад стоящих камней». Каждая башенка одета в свой керамический наряд.

Также Гуэль и Гауди мечтали превратить Лысую гору в сад. И это был прорыв! Парк Гуэля, или, как говорили раньше, «природа, застывшая в камне», до сих пор не имеет аналогов. Частные виллы утопали бы в зелени, вокруг усадеб – дорожки, аллеи, беседки, фонтаны, гроты, акведуки, плюс охрана по периметру. Коммерчески проект провалился. Было продано всего два участка из шестидесяти, состоятельные люди не захотели жить так далеко от города. Нынешние барселонцы выбор места одобряют. Планировка парка напоминает сжатую пружину – от подножия к вершине серпантином поднимаются извилистые тропинки и крутые лестницы. Теперь парк Гуэля не только радость для души и глаз, но и большое удовольствие для барселонцев и туристов, ведь там и пальмовые рощи, и чистый воздух. Парк оказался выше уровня смога. А те, кто добираются до вершины, получают в награду великолепный вид на Барселону и море.

Особняк « Наутилус »

В качестве своего творческого манифеста мексиканский архитектор Хавьер Сеносиан и его коллеги из бюро построили дом в местечке Наукальпан (Мехико). Критики тут же объявили постройку аллюзией на безумные «растительные» структуры Антонио Гауди. И действительно, что-то общее в архитектонике и декоре обнаружить можно. Хотя прототипом жилища стало не растение или цветок, а закрученная раковина моллюска наутилуса.

«Мне всегда было интересно почувствовать, каково это – жить в раковине», - смеется архитектор. Интерьер дома динамичен благодаря спиральным лестницам, криволинейным объемам и перламутровой отделке (мозаике). Дневной свет, проникая сквозь главный цветной витраж и круглые световые люки в крыше, создает таинственную атмосферу. Основным строительным материалом стал невероятно пластичный армоцемент. Кроме него, архитекторы использовали гранитокерамику Grancrete, мозаичную плитку, стекло и натуральный камень.

Бионика в интерьере

Бионика появилась и начала активно развиваться в Европе в двадцатых годах двадцатого века, но своего полного расцвета она достигла лишь в семидесятых годах, приобретя свой нынешний облик и будучи признанной как самостоятельный стиль.

Стремительность жизни современного общества, огромные расстояния и активная деятельность человека приводят к тому, что у жителей городов практически не остается свободного времени для личной жизни. Но ведь и для занятых, мобильных и деловых людей очень важен комфорт и уют личного пространства. Часто дом становится единственным местом, где человек может полноценно отдохнуть, расслабиться и отгородиться от суеты большого города. Бионическая архитектура обращена к человеку, к его внутреннему миру, ведь интерьер должен положительно влиять на самочувствие, настроение человека и раскрывать его творческие способности.

Интерьер биодома является продолжением самого дома. Этот стиль старается избегать прямых углов и прямых линий. Характерными элементами данного стиля является плавность линий и массивность предметов обстановки. Текстуры и декоративные элементы интерьера повторяются с той же гармоничностью и тем же изяществом, какие мы привыкли видеть в живой природе. Четкое разграничение и зонирование пространства окажется здесь неуместным, равно как и четкий переход между поверхностями. Формы в интерьерах, как правило, заимствуются из живой среды и воссоздаются современными технологиями.

Традиционным для данного направления является использование светлой цветовой гаммы, глянцевые и даже зеркальные текстуры, а также характерные для природы орнаменты . В предметах обстановки может использоваться перфорация с целью уменьшения веса конструкции. Цвета бионики: белый, молочный, слоновая кость, бежевый, очень светлый серый,окраска зелени, неба, воды, коры, песка и прочие. Возможны элементы ярких цветов: синий, алый, лимонный. Все, как в природе!

Элементы биоинтерьера

Согласитесь, любопытно оказаться среди цветов или забавных предметов, может быть, напоминающих что-то определенное, а может, совсем ни на что не похожих и пробуждающих фантазию? В бионических формах природные стилизации могут быть применены как ко всей предметной среде интерьера в целом, так и к отдельным предметам дизайна.

Например, бионические светильники выбиваются из ряда геометрически правильных форм. Так, если взять любую классическую люстру в стиле модерн или классика – с хрустальными подвесками, коваными элементами, – беглого взгляда хватает, чтобы увидеть в ее основании геометрию. А в бионике чаще необычные формы, нелогичные линии . Впрочем, зачастую люстры классических направлений могут содержать в себе элементы бионики: так, довольно популярна идея украшения потолочных светильников декоративными фруктами из муранского стекла .

Бионические светильники можно условно разделить на две группы: классическую и авангардную.

Классическую линию в интерьерной бионике образовывают светильники из традиционных материалов: бронзы, хрусталя, стразов, детально воспроизводящих цветы и с оцветия, а также букеты экзотических растений, кленовые или дубовые резные листочки . Используются любые растительные мотивы: листья, травы, цветы, плоды – здесь фантазия художников неисчерпаема, как неисчерпаем мир флоры.

Однако к стилю бионика относятся не только изображения цветов и плодов. Авангардную линию составляют навеянные природой ассоциации , воплощенные дизайнером в статичном интерьере, объектах мебели, конструкций, оформлениях проемов и т.д. Например, застывшие в углу медузы или камни – это на самом деле светильники, дающие мягкий и рассеивающие свет; в углу стоит стул, напоминающий пчелу или лепесток цветка, а в центре комнаты вырос диван, похожий на облако. В интерьерах бионики часто встречается такое «цитирование» природных элементов и их форм.

Жан-Мари Массо. Все лучшее – от природы

Один из самых плодовитых архитекторов и дизайнеров, прославившихся в 2000-е годы, Жан-Мари Массо, в своих проектах следует идеям бионики и технофутуризма. Идеи для дизайна интерьера и архитектуры он призывает подсматривать у природы. Рассмотрим, какими же должны быть предметы мебели, чтобы соответствовать этим принципам.

1. Состоять из высокотехнологичных материалов. Интерьерная бионика часто использует высокотехнологичные материалы и продукты органического синтеза. Жан-Мари Массо считал, что полимеры отлично сочетаются с традиционными натуральными материалами, дополняя их и создавая принципиально новое органичное пространство. Искусственно синтезированные и переработанные материалы дают совершенно новый уровень комфорта, отлично выдерживают высокие нагрузки и крайне просты в уходе. Материалы «будущего» устойчивы к загрязнениям, имеют малый вес, и в зависимости от своего назначения, могут долгое время сохранять тепло или, напротив, не нагреваться.

2. Вписываться в окружающее пространство. В бионике архитектурная постройка или садовая ме бель обязательно гармонируют с ландшафтом. Например, бионика предлагает дом, который встраивается в склон холма и плавно продолжает его, или парящий в воздухе отель в виде облака, или если речь идет о мебели для сада кресло с каркасом из тонкой сетки, напоминающее нежную дымку с мягкими очертаниями.

3. Мимикрировать и растворяться в ландшафте или интерьере. Назойливые акценты не свойственны живой природе, поэтому и бионика в интерьере не пестрит избытком цветов и объёмов, позволяя пространству всегда оставаться воздушным и легким. Диван на тонком каркасе, ширма из дымчатого стекла, смеситель из блестящей стали, будто сливающейся с потоком воды, обозначают свое присутствие, но не навязывают его.

4. Обладать природными формами. Силуэты зданий и предметов могут быть обтекаемыми и плавными, как раковины или живые организмы, реже строгими, как кристаллы, но всегда гармоничными. Криволинейные предметы часто стремятся к форме капли воды, морской звезды, цветка, ортогональные – к призме.

5. Дарить тактильные удовольствия. Без них немыслима живая природа, и потому бионика в интерьере ценит мелкие предметы обтекаемой формы, которые будто сами ложатся в руку, круглящиеся формы изделий из пластика, следующие изгибам тела, сплошь состоящие из мягких поверхностей кресла и диваны.

6. Быть лаконичными. Простые формы и ясно читающиеся силуэты диктуются целесообразностью, удобством и эргономикой, будь то силуэт здания или держателя бумаги, похожего на сучок дерева, абрис дивана, напоминающего очертание холма или волны, ванны в виде створки раковины.

7. Демонстрировать природную структуру. Не только внешняя форма, но и связанное с ней «содержание» напоминают о связи с природой. Сферическая постройка внутри предстанет как серия пещер-промоин в мягкой породе, стеклянный призматический стол продемонстрирует ячеистость внутренних отсеков, поверхность кресла из термопластика явит пористую структуру материала.

8. Уметь строиться по модульному принципу. Принцип пчелиных сот и точно пригнанных друг к другу кристаллов подсказывает такие идеи, как секционные постройки, модульная мебель, которую удобно комбинировать, составлять в ряд по горизонтали или вертикали.

9. Радовать глаз естественными цветами. Бионика в интерьере приветствует оттенки снега и почвы, зелени, воды и неба, они в бионике самые «ходовые». Как и в естественных условиях, вкрапления ярко-красного или ослепительно-синего делегируются единичным «акцентным» предметам с тонкими силуэтами.

10. Будить чувство юмора. Без него самый «умный» дизайн становится холодно-прагматичным. Без толики самоиронии не «сочинить» диван, похожий на спонж и ванну, или скульптуру ростом с оранжерейное дерево, в которую можно высаживать растения.

"Правила строительства", №4 5 /2, июль 2014

Правообладателем всех материалов сайта является ООО «Правила строительства». Полная или частичная перепечатка материалов в любых источниках запрещена.

Архитектурно-строительная бионика изучает законы формирования и структурообразования живых тканей, занимается анализом конструктивных систем живых организмов по принципу экономии материала, энергии и обеспечения надежности. Яркий пример архитектурно-строительной бионики — полная аналогия строения стеблей злаков и современных высотных сооружений. Стебли злаковых растений способны выдерживать большие нагрузки и при этом не ломаться под тяжестью соцветия. Если ветер пригибает их к земле, они быстро восстанавливают вертикальное положение. В чём же секрет? Оказывается, их строение сходно с конструкцией современных высотных фабричных труб — одним из последних достижений инженерной мысли. Идентичность строения была выявлена позже. В последние годы бионика подтверждает, что большинство человеческих изобретений уже «запатентовано» природой.

Стремление к комфорту, к добротному, уютному и красивому жилью присуще человечеству с давних пор. Каждый из нас хочет, чтобы окружающее пространство входило в резонанс с его внутренним миром. Cейчас у каждого из нас есть шанс построить свой идеальный дом. Может это будет садовый дом с мансардой , как у героев Чехова. А возможно, коттедж с
террасой в американском стиле. Важно то, что он может сочетать в себе все элементы удивительного архитектурного стиля - "бионическая архитектура".

Появлению необычных архитектурных стилей мы обязаны гениям от зодчества. Талант вечно в поиске. Доказательства этому встречаются на каждом шагу в виде памятников архитектуры, разбросанных по всему миру. На протяжении многих лет стили сменяют друг друга, каждый из них неповторим. Современность предлагает новый подход к архитектуре. Одно из новых направлений - бионика, заслуживает особого внимания.

Бионика в переводе с греческого означает "живущий". Изучив строение и способ жизни растений и животных, архитекторы применяют в инженерных сооружениях те же принципы. До сих пор среди исследователей не существует единогласного мнения, творчество каких архитекторов следует отнести к направлению “живой архитектуры”. И все же основоположником бионики можно считать Антонио Гауди, ещё в девятнадцатом столетии построивший первые уникальные дома. Надменная и пресытившаяся архитектурными находками Европа пришла в восторг от творений мастера. А бионика получила мощный толчок к развитию. Уже в начале 20-го века основатель антропософии Рудольф Штейнер создал проект удивительного сооружения под названием Гетеанум. Проект был воплощён в жизнь.

Известная всем конструкция Эйфелевой башни (см. заметку Суперсооружения: Эйфелева башня (Париж)) основана на научной работе швейцарского профессора анатомии Хермана фон Мейера (Hermann Von Meyer). За 40 лет до сооружения парижского инженерного чуда профессор исследовал костную структуру головки бедренной кости в том месте, где она изгибается и под углом входит в сустав. И при этом кость почему-то не ломается под тяжестью тела.

Фон Мейер обнаружил, что головка кости покрыта изощренной сетью миниатюрных косточек, благодаря которым нагрузка удивительным образом перераспределяется по кости. Эта сеть имела строгую геометрическую структуру, которую профессор задокументировал.

В 1866 году швейцарский инженер Карл Кульман (Carl Cullman) подвел теоретическую базу под открытие фон Мейера, а спустя 20 лет природное распределение нагрузки с помощью кривых суппортов было использовано Эйфелем.

Сейчас многие столицы мира украшены зданиями в бионическом стиле. То там, то здесь возникают новые "живущие" сооружения. Голландия и Австралия, Китай и Япония, Канада и даже Россия могут похвалиться бионическими шедеврами.

В архитектурно-строительной бионике большое внимание уделяется новым строительным технологиям. Так в области разработок эффективных и безотходных строительных технологий перспективным направлением является создание слоистых конструкций. Идея заимствована у глубоководных моллюсков. Их прочные ракушки, например у широко распространенного «морского уха», состоят из чередующихся жестких и мягких пластинок. Когда жесткая пластинка трескается, то деформация поглощается мягким слоем и трещина не идет дальше.

Бионика стремится максимально раскрыть назначение каждого помещения в жилище. Никакой взаимозаменяемости комнат. Спать нужно в спальне, готовить на кухне, а гостей принимать в гостиной. Каждая комната предназначена для отведённой ей роли и оборудована для этого с наибольшим комфортом. Дом не будет иметь привычной геометрической формы. Скорее он будет напоминать объект живой природы. Мягкие плавные линии стен, окон, перетекая друг в друга, создадут ощущение движения. Внутри органического дома создаётся впечатление волшебного мира, поскольку этот архитектурный стиль предусматривает обилие света во всех комнатах. Зачастую используются цветные стёкла, поэтому и свет может быть необычного оттенка. Одновременное чувство движения и покоя - вот, пожалуй, главное достоинства дома, выполненного в органическом стиле. Под разными углами зрения неуловимо меняется и само помещение.

Это лишь малая часть того, что можно рассказать о стиле, созданном для человека, стремящегося раскрыть свой внутренний мир, душевный и духовный потенциал. Теперь и архитектура берёт на себя эту непростую задачу.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Реферат

Тема: « Бионика в архитектуре »

Выполнила: Лаврентьева Ксения

Самара - 2015 год

Введение

1. Понятие бионика

2. Зарождение бионики

3. Архитектурно - строительная бионика

4. Конусообразные конструкции

5. Конструкции с предварительным напряжением

6. Оболочки

7. Конструкции, имеющие вид спирали

8. Сетчатые, решетчатые и ребристые конструкции

9. Примеры конструкций

Заключение

Список использованной литературы

Приложения

Введение

Уже к началу XX века архитектура претерпела существенные изменения. Сказались последствия научно-технической революции - появление железобетона и опыт непосредственного использования металла в качестве строительного материала. Сказались также изменения социального порядка - рост городов, промышленных предприятий, демографическая проблема. Необходимость строить быстро, прочно, много, и дешево оказывала давление на архитектуру и обусловила ее характер и тенденции развития в XX-ХХI веках.

Это определило рождение интеграционных дисциплин и течений в науке, технике и искусстве, одним из примеров которых и является архитектурная бионика.

Архитектурно-бионическая практика породила новые, необычные архитектурные формы, целесообразные в функционально-утилитарном отношении и оригинальные по своим эстетическим качествам. Это не могло не вызвать к ним интереса со стороны архитекторов и инженеров.

Использование в технике и в архитектуре законов и форм живой природы вполне правомерно. В мире все взаимообусловлено. Нет вещей и явлений, которые бы не были связаны непосредственно или опосредованно между собой, нет непроходимых барьеров между живой природой и искусственными формами и конструкциями. Существуют законы, объединяющие весь мир в единое целое и порождающие объективную возможность использования в искусственно создаваемых системах закономерностей и принципов построения живой природы и ее форм. Основой этому служит биологическое родство человека и живой природы.

Актуальность темы обусловлена прогрессирующим развитием использования бионических форм в предметной среде, окружающей человека, начиная с древнего мира. Всё больше и больше биоформы оказывают влияние на всё, что создаётся человеком, в частности, на архитектуру. С развитием технологий и появлением всё новых материалов возможности использования бионических форм в архитектуре становятся практически безграничными. Важность изучения дисциплины бионика неоспорима, как неотъемлемая часть архитектуры.

Целью работы является рассмотрение возможности использования бионических форм в архитектуре.

Задачи работы заключаются в изучении самого понятия бионики, бионической архитектуры, в изучении основных направлений бионической архитектуры и примеров использования бионических форм в архитектуре.

1 . Понятие бионика

Бионика -- наука, изучающая живую природу, с целью использования полученных знаний в практической деятельности человека.

Бионика (англ. bionics, от bion -- живое существо, организм; греч. Bioo -- живу).

Термин бионика впервые появился в 1960 г., когда специалисты различных профилей, собравшиеся на симпозиум в Дайтоне (США), выдвинули лозунг: «Живые прототипы -- ключ к новой технике». Бионика явилась своеобразным мостом, связавшим биологию с математикой, физикой, химией и техникой.

Одна из важнейших целей бионики -- установить аналогии между физико-химическими и информационными процессами, встречающимися в технике, и соответствующими процессами в живой природе.

Специалиста-бионика привлекает все многообразие «технических идей», выработанных живой природой за многие миллионы лет эволюции.

Особое место среди задач бионики занимают разработка и конструирование систем управления и связи на основе использования знаний из биологии. Это -- бионика в узком смысле слова.

Бионика имеет важное значение для кибернетики, радиоэлектроники, аэронавтики, биологии, медицины, химии, материаловедения, строительства, архитектуры и др.

К задачам бионики относятся также освоение биологических методов добычи полезных ископаемых, технологии производства сложных веществ органической химии, строительных материалов и покрытий, которые использует живая природа.

Бионика учит искусству рационального копирования живой природы, изысканию технических условий целесообразного использования биологических объектов, процессов и явлений.

Один из возможных путей здесь -- функциональное (математическое, или программное) моделирование, заключающееся в изучении структурной схемы процесса, функций объекта, числовых характеристик этих функций, их назначения и изменения во времени.

Такой подход дает возможность изучать интересующий процесс математическими средствами, а техническое воплощение модели осуществить тогда, когда в принципе установлена ее эффективность и осталось проверить экономические, энергетические и другие возможности конструирования такого рода модели имеющимися техническими средствами.

Существует и другой путь -- физико-химическое моделирование, когда специалист в области бионики изучает биохимические и биофизические процессы с целью исследования принципов превращения (включая разложение и синтез) веществ, происходящих в живом организме. Этот путь более всего примыкает к химико-технологической проблематике и открывает новые возможности в развитии энергетики и химии полимеров.

Третий подход, развиваемый бионикой -- это непосредственное использование живых систем и биологических механизмов в технических системах. Такой подход принято называть методом обратного моделирования, так как в этом случае специалист-бионик изыскивает возможности и условия приспособления живых систем для решения чисто инженерных задач, иначе говоря, пытается моделировать на биологическом объекте техническое устройство или процесс.

Возникшая в ответ на запросы практики бионика послужила началом исследований, основанных на применении биологических знаний во всех областях техники.

бионика архитектура конусообразный конструкция

2 . Зарождение бионики

Достигнув определённого потолка в развитии искусственных механизмов, люди для дальнейшего поступательного движения вперёд стремятся позаимствовать те принципы и методы, с помощью которых созданы и функционируют живые организмы.

Неофициальный титул «отца бионика» принадлежит Леонардо да Винчи. Этот великий гений в истории цивилизации первым попытался использовать опыт природы при построении рукотворных машин. Из его чертежей и записей ясно, что при разработке собственного летательного аппарата главная роль им отводилась воспроизведению того же механизма, с помощью которого птицы машут крыльями и создают подъёмную силу (рис.1) . Эти идеи да Винчи были невостребованными вплоть до прошлого столетия, когда под воздействием развития кибернетики учёные обратили пристальное внимание на деятельность так называемых «живых систем» (то есть объектов природы).

Окончательно, как наука, бионика оформилась в 1960 году на симпозиуме учёных в Дайтоне.

Пионером использования принципов бионики при сооружении зданий стал великий каталонский архитектор конца XIX ? начала XX веков Антонио Гауди. Именно Гауди первым стал не просто привносить в архитектурные сооружения декоративные элементы природы, а придал постройкам характер окружающей среды.

Профессиональные архитекторы, ландшафтные дизайнеры и просто ценители прекрасного до сих пор не перестают восхищаться гениальными архитектурными решениями Гауди при сооружении Парка Гуэля (рис.2): чего стоит только своеобразная колоннада, выполненная в стиле античных портиков, представляющая из себя подобие сросшихся стволов деревьев.

Бионические принципы архитектуры в начале 1920-х годов воспринял и развил Рудольф Штайнер. В 1921 году Рудольф Штайнер создал свой «Гетеанум» (рис. 3), после чего и началось широкое применение бионики при проектировании зданий и сооружений.

Благодаря развитию научных методов, расширению базы знаний и появлению возможности детального математического моделирования архитекторы прошлого пришли к выводу, что большинство архитектурных принципов и законов, над которыми человечество опытным путём проб и ошибок билось тысячелетиями, находилось у нас под самым носом, в природе.

Поэтому главной задачей бионики в архитектуре является поиск в природных биологических системах оптимальных решений возникающих архитектурных задач. Идёт изучение законов формирования и структурообразования живых тканей, конструктивных систем живых организмов по принципу экономии материала, энергии и обеспечения надежности.

3 . Архитектурно - строительная бионика

Архитектурная бионика в недавнем прошлом - это осмысление природных форм в строительных конструкциях, новые возможности архитектурного формообразования.

Архитектурная бионика сегодня (необионика) - это попытка увязать экологические аспекты и высокие технологии с архитектурой.

Архитектурно-строительная бионика изучает законы формирования и структурообразования живых шуб, занимается анализом конструктивных систем живых организмов по принципу экономии материала, энергии и обеспечения надежности. Интенсивно изучаются органы чувств животных, внутренние механизмы реакции на окружающую среду и у животных, и у растений.

Немало замечательных сооружений в далеком прошлом человек создал, копируя архитектурные формы растительного мира. Всмотритесь в легкие африканские постройки, и вы увидите в них очертания ульев (рис.4), древневосточные пагоды напоминают стройные ели с тяжело висящими ветками (рис.5), мраморная колонна Парфенона -- олицетворение стройного ствола дерева (рис.6), колонна египетского храма подобна стеблю лотоса(рис.7), готическая архитектура-- воплощение в бесстрастном камне конструктивной логики, гармонии и целесообразности живого.

Вспомните знаменитые Кижи (рис.8). Их купола напоминают луковицы. Церковь в Филях (рис.9), как живой организм, уменьшается с высотой, развивается от центра к периферии. Вся она как бы трепещет, все в ней тонко и гармонично. Храм Василия Блаженного тот же главный ствол, от которого кверху и в сторону идет разветвление и размельчение форм (рис. 10).

Удивительное родство приемов! Словно зодчие договорились об общности своих творческих принципов. Полистав страницы истории строительного дела, можно найти еще множество примеров копирования человеком архитектоники живой природы. Однако необходимо еще раз подчеркнуть, что древнее строительное искусство было подобно организации живой природы лишь по форме. У природы зодчие учились гармоничности пропорций, логичному распределению объемов здания, подчинению второстепенного главному, верному сочетанию размеров деталей, конструктивной правде, но они не знали главного -- законов формообразования, секретов самоконструирования живого.

Внутренняя организация живого, конструктивная сторона листа, стебля злака и ствола дерева стали объектом исследования ученых более поздних времен. Эти исследования и заложили основу архитектурной бионики.

Яркий пример шубной архитектурной бионики -- полная аналогия строения стеблей злаков и современных высотных сооружений. Стебли злаковых растений способны выдерживать большие нагрузки и при этом не ломаться под тяжестью соцветия. Если ветер пригибает их к земле, они быстро восстанавливают вертикальное положение. Их строение сходно с конструкцией современных высотных фабричных труб.

Обе конструкции внутри полые. Склеренхимные тяжи стебля растения играют роль продольной арматуры. Междоузлия (узлы) стеблей -- кольца жесткости. Вдоль стенок стебля находятся овальные вертикальные пустоты. Стенки трубы имеют такое же конструктивное решение. Роль спиральной арматуры, размещенной у внешней стороны трубы, в стебле злаковых растений, выполняет тонкая кожица. Однако к своему конструктивному решению инженеры пришли самостоятельно, не «заглядывая» в природу. Идентичность строения была выявлена позже.

Бионика подтверждает, что многие человеческие изобретения имеют аналоги в живой природе, например, застежки «молния» и «липучки» были придуманы на основе строения пера птицы. Бородки пера различных порядков, оснащенные крючками, обеспечивают надежное сцепление.

Мы выяснили, что есть несколько направлений в архитектурной бионике: Конусообразные конструкции, Конструкции с предварительным напряжением, Оболочки, Конструкции, имеющие вид спирали, Сетчатые, решетчатые и ребристые конструкции. Сейчас мы их и рассмотрим.

4 . Конусообразные конструкции

В живой природе функция и форма тесно сближены и взаимно обусловлены. Образование механических тканей живых организмов связано с интенсивностью роста и влиянием многих внешних факторов. Поэтому для конструктивной формы, например, стволов и стеблей растений характерно распределение строительного материала по линиям максимальных напряжений. Опорные элементы организма обладают значительной частью его массы.

Одной из опорных форм в природе является конус. Он присутствует в конструктивном построении крон и стволов деревьев, стеблей и соцветий, грибов, раковин и пр. Среди конусообразных форм природы встречаются два начала.

Первое - это начало устойчивости. Оно выражается в форме статичного конуса, или конуса гравитации (конус основанием вниз). Это оптимальная форма для восприятия ветровых нагрузок и действия сил тяжести. Ее легко заметить в кроне или стволе ели (рис.11а), в шляпке или ножке белого гриба, сморчка обыкновенного, у гриба зонтика.

Второе начало - это начало развития, которое выражается в форме динамического конуса, или конуса роста (конус основанием вверх). Примерами конуса роста являются гриб бокальчик(рис.11б), гриб лисичка, слоевища некоторых видов лишайника кладонии.

Но чаще в природе проявляется взаимодействие двух конусов. На основании комбинаций двух одинаковых или разных по своему началу конусов возникают различные формообразования. Примером являются кроны многих деревьев, которые внизу начинают развиваться по принципу конуса роста, а заканчиваются по принципу конуса гравитационного - вершиной вверх. Архитекторы в своем творчестве нередко используют принцип конуса. Так, в конструкции Останкинской телебашни (рис.12) отчетливо виден конус гравитации. Принцип конуса роста лежит в основе построения водонапорной башни в Алжире. Ярким примером взаимодействия двух конусов является конструкция водонапорной башни известного русского архитектора В. Шухова (1896)(рис.13)

5 . Конструкции с предварительным напряжением

Среди травянистых растений нашей средней полосы широко распространено растение манжетка обыкновенная(рис.14). Его легко заметить по складчатой форме листьев и сверкающей капельке влаги, которая часто скапливается у основания листа. Именно благодаря складчатой форме листьев растение и получило свое название - сложенные ровными складочками его листья напоминают старинные кружевные манжеты.

Ребристая форма листа придает ему, по сравнению с такими же листьями, имеющими гладкую поверхность, дополнительную жесткость, прочность и устойчивость в пространстве.

Лист манжетки благодаря ребристой форме удерживает тяжелую каплю воды и не сминается под тяжестью во много раз большей, чем его вес. В этом заключается одна из интереснейших закономерностей природы - сопротивляемость конструкций по форме

Она проявляется не только в складчатых листьях, но и тогда, когда листья или лепестки растений свертываются в трубочку, закручиваются в спираль, образуют причудливые желоба, то есть принимают другую пространственную форму без затрат на это дополнительного строительного материала. Такое изменение формы в пространстве обеспечивает растению, его листьям и цветкам наибольшую прочность и позволяет, например, закрученным длинным листьям рогоза держаться в вертикальном положении, а нежным, длинным лепесткам венерина башмачка противостоять ветру.

Принцип сопротивляемости конструкций по форме, существующий в природе, нашел широкое применение в современном строительстве. Складчатая конструкция - одна из простейших среди многообразия пространственных конструкций. Образованные из плоских поверхностей, они просты в изготовлении и в монтаже. Они могут перекрывать весьма большие сооружения, например, зал ожидания на Курском вокзале (рис.15)или легкоатлетический (рис.16).

6 . Оболочки

В мастерской природы часто встречаются конструкции в виде сводов различных пространственных форм (скорлупа ореха и яйца, панцири и раковины животных, гладкие листья, лепестки растений и др.). Пространственно изогнутые и тонкостенные, они, благодаря непрерывности и плавности формы, обладают свойством равномерного распределения сил по всему сечению. Геометрия формы помогает этим сводчатым конструкциям стать прочнее. Именно потому, что лепесток цветка изогнут, он выдерживает удары капель дождя, садящихся на него насекомых, а тонкие сводные панцири морских ежей, крабов и раковины моллюсков - давление воды в глубине моря.

Идеальную по прочности форму изобрела природа для тонкой яичной скорлупы. В ней также нагрузка из одной точки передается на всю ее поверхность. Но своеобразие этой конструкции не только в особой геометрической форме. Несмотря на то, что толщина скорлупы равна примерно 0,3мм, она состоит из 7 слоев, каждый несет свою определенную функцию. Слои не расслаиваются даже при самых резких изменениях температуры и влажности, представляя собой яркий пример совместимости материалов с различными физико-механическими свойствами. Повышенную прочность яичной скорлупе придает еще тонкая эластичная пленка, которая превращает скорлупу в конструкцию с предварительным напряжением.

С развитием городов и ростом населения перед строителями встала задача проектирования больших по размеру зданий без тяжелых трудоемких покрытий и промежуточных опор. Поэтому легкие и прочные, тонкостенные и экономичные природные сводчатые конструкции заинтересовали архитекторов. Принцип конструкции этих оболочек лег в основу создания легких, большепролетных стальных и железобетонных покрытий различной кривизны, которые нашли широкое применение при строительстве спортивных комплексов, кинотеатров, выставочных павильонов и т. д. Основное качество таких покрытий - легкость, и чем больше пролет, тем легче купол. В современных постройках толщина купола измеряется миллиметрами, и получили такие купола название оболочек-скорлуп.

Примерами таких конструкций являются кровля выставочного павильона в Париже, напоминающая лепесток цветка, она перекрывает без опор пролет более 200 м, крыша выставочного павильона в Ереване, купол цирка в Казани (рис.17), крыша торгового центра в Челябинске (рис.18), имеющая вид оболочки двоякой кривизны, покрывающей без единой промежуточной опоры площадь более гектара.

7 . Конструкции, имеющие вид спирали

Спираль - одна из форм проявления движения, роста и развития жизни. По закону спирали развивается Галактика и живой организм, например, растения. Первым, кто отрыл, что растущее растение описывает спираль, был Чарльз Дарвин. Описывая спираль, вытягиваются стебли растений, двигаясь по спирали, раскрываются лепестки некоторых цветов, например, флоксов, развертываются побеги папоротника.

Спираль в то же время является в природе и сдерживающим началом, направленным на экономию энергии и материала.

Лишь изменяя форму конструкции, придавая ей вид спирали, природа, таким образом, достигает в конструкции дополнительную жесткость и устойчивость в пространстве.

Так, например, завиваются в спираль, приобретая этим дополнительную жесткость, тонкие и длинные стебли огурцов или тыквы, длинные листья рогоза и тонкие ножки грибов. Раковины простейших одноклеточных организмов форманифер и раковины моллюсков, закрученные в одной или разных плоскостях (турбоспирали) - это также проявление способа достижения наибольшей прочности при экономном расходовании материала. Благодаря завитой форме такие тонкостенные конструкции выдерживают большое гидродавление при погружении на глубину.

Закрученная форма природных конструкций, как способ достижения большой устойчивости в пространстве при экономном расходовании «строительного» материала, подсказала архитекторам новую форму спиралевидной основы здания - турбосомы. Турбосома аэродинамична, любые ветры лишь обтекают ее тело, не раскачивая и не принося ей никакого вреда. Она может быть использована при строительстве высотных домов.

Спиральные башни «Mode Gakuen» (рис.19)это 170 метровое, 36-этажное учебное заведение, расположенное на главной улице города Нагоя, перед станцией Нагоя, в префектуре Айти (Aichi), Япония. Форма зданий похожа на крыло - с широкой частью на вершине. Здание постепенно меняет ось вращения с высотой, благодаря чему форма здания образует изгиб. Форма спиральных башен немного меняется при просмотре с разных углов обзора, благодаря чему они выглядят элегантно, но динамично. Сильная внутренняя вертикальная труба опоры виднеется сквозь отверстия между тремя крыльями, что подчёркивает смелый дизайн, но и не выбивается из общего вида.

8 . Сетчатые, решетчатые и ребристые конструкци и

Широкое распространение в природе имеют плоские и пространственно-изогнутые ребристые, сетчатые и перекрестные (решетчатые) конструкции, в которых основной материал концентрируется по линиям главных напряжений.

Тонкий лист растения или прозрачное крылышко насекомого обладают достаточной механической прочностью благодаря разветвляющейся в них сетке жилок.

Этот каркас выполняет основную (несущую) роль, тогда как другие элементы конструкции, например, пленка листа или мембрана крыла, могут достигать минимального сечения. Это также один из примеров достижения прочности при минимальной затрате материала. Тонкие крылышки стрекозы коромысла делают до 100 взмахов в секунду, шмеля - более 200, комнатной мухи - до 300, а комара дергуна - до 1000 взмахов.

Заинтересовал архитекторов и принцип конструкции листьев растений. Лист растения обладает достаточной механической прочностью, которая в значительной степени зависит от жилок, пронизывающих его плоскость от основания до верхушки.

Особенно привлек к себе внимание лист тропического растения Виктории регии (рис.28), встречающегося в водах Амазонки и Ориноко. Плавающие листья этой крупной водяной кувшинки вырастают до 2-х метров в диаметре и выдерживают, не погружаясь в воду, вес до 50 кг. С нижней стороны этот лист как бы укреплен толстыми и прочными прожилками, похожими на канаты. Продольно изогнутые жилки скреплены между собой серповидными поперечными диафрагмами. Такая конструкция создает прочную основу для размещения между жилками тонкой полупрозрачной пленки листа. Взяв за основу жилкование листа Виктории регии, итальянский архитектор П. Нерви сконструировал плоское ребристое покрытие фабрики Гатти в Риме и покрытие большого зала Туринской выставки, добившись большого конструктивного и эстетического эффекта.

Принцип построения листа Виктории регии использовали наши архитекторы при сооружении потолка фойе Тульского драматического театра (рис.20). Они протянули по потолку железобетонные нервюры, которые несут огромный пролет.

Используется в архитектурной практике и принцип построения природных пространственно-решетчатых систем: радиолярий, диатомовых водорослей, некоторых грибов, раковин, даже микроструктура головки тазобедренной кости. В этих моделях особенно ярко проявляется принцип распределения материала с расчетом на самые случайные и разнонаправленные действия нагрузок. Например, структура головки тазобедренной кости построена так, что никогда не работает на излом, а только на сжатие и растяжение. Подобная система может быть использована в конструировании опорных рам, ферм, подъемных кранов.

9 . Примеры конструкций

На рисунке 21.в. изображена шаровидная морская звезда. Ее опорный скелет (рис. 21.б) состоит из известковых пластинок, соединенных между собой мускулами. Мелкие пластинки образуют кожу. Шарообразное расположение скелетных пластинок подсказало строителям конструкцию жилого дома и других строительных сооружений. По аналогии с шарообразной морской звездой в Англии построено укрытие для радиолокатора (рис.21.а). Диаметр его 33,5 м, оболочка ребристая. Ребра выполнены из алюминиевого сплава. Материалом для оболочки служит полиэфирный стеклопластик. Конструкция состоит из 775 элементов треугольной формы.

Радиолярии (простейшие организмы) обитают в теплых морях. Всю жизнь проводят в движении, образуют планктон - пищу для крупных морских животных. На рисунке 22 изображена радиолярия (организм отряда Nasselaria) в форме решетчатого колокола с перетяжками и многочисленными иглами, а на рисунке 23 - в форме радиально расположенных и одинаково развитых игл (организм отряда Acantharia). В центре радиолярий расположена капсула - скелетное образование для защиты ядра. Стенки капсулы пористые: для связи с окружающей средой. Великий конструктор природа придала им изящный вид.

Их форма заинтересовала архитекторов. По типу, например, решетки радиолярии (рис. 24) (организм отряда Acantharia) выполняется проект строительной конструкции с перекрытием большой площади. В Москве и в других городах нашей страны можно встретить сейчас дома, элементы строительных конструкций которых заимствованы у радиолярий

Заимствуя у природы принцип конуса и другие секреты, строители соорудили Останкинскую телевизионную башню (рис.12), утолщенную у основания и остроконечную. Внешне она напоминает стебель или иглу. Ее общая высота 540 метров 74 сантиметра. Масса ее 55 тысяч тонн. Внутри смонтировано семь лифтов, из них четыре скоростных. За 58с можно подняться на смотровую площадку, на высоту 337 м. При сильном ветре башня может раскачиваться до 10 м, сохраняя при этом свою прочность. Внутри башни протянуты 150 стальных канатов подобно тому, как в стебле пшеницы или бамбука внутри имеются продольные волокна. Они спрятаны под бетонной «рубашкой». Вот почему башня прочная и гибкая. Она может выдерживать ветер в 15 баллов и землетрясение в 8 баллов. Надежность ее рассчитана на 300 лет.

Растения не только выдерживают механические нагрузки, но и реагируют в течение дня на изменение света, температуры, влажности. Эти способности растений использовал советский архитектор Ю.С.Лебедев. На выставке, проходившей в Москве в 1982 г., демонстрировался созданный им макет жилого дома (рис.25), который, словно цветок подсолнечника, поворачивался в течение дня вслед за солнцем.

В Голландии возведены 24 необычных дома (рис.26). Внешне они напоминают деревья. Первый этаж построен в виде ствола, а на нем - гигантские кубы, в которых размещены жилые помещения.

Изучение слоистого строения скорлупы куриного яйца помогает инженерам создать новые строительные слоистые материалы с отличными механическими свойствами, легкие, пропускающие воздух и препятствующие проникновению влаги. На рисунке изображен жилой дом в форме яйца (г. Базель, Швейцария) (рис.27). Наибольший диаметр дома равен 7,2м. Оболочка его трехслойная, замкнутая, эллиптическая, из полиэфирного стеклопластика. Дом без углов, с двумя окнами, на трех опорах. На постройку такого дома расходуется небольшое количество материала.

Заключение

Архитектурная бионика - это новая страница в развитии строительной техники и зодчества, это осознанная, вызванная требованиями нашего времени необходимость изучить инженерные решения природы, познать законы, секреты ее строительного мастерства, это целенаправленный поиск оригинальных архитектурных форм, идеально рассчитанных самой природой.

В том, что архитекторы и строители, как и радиотехники, электроники, кораблестроители, авиаконструкторы, машиностроители и специалисты многих других отраслей техники, обратились к природе, к ее строительному искусству, нет ничего случайного. Ведь архитектурно-строительная мастерская природы без устали работает по крайней мере 2700 млн. лет, в то время как у человека строительная практика исчисляется лишь несколькими тысячелетиями существования материальной культуры.

В живой природе все предельно гармонично. В архитектуре заимствуется гармония содержания и формы, обогащается эстетика. Природа порождает у человека чувство жизнеутверждения, стремления к свету, теплу. Все это архитекторы стремятся отразить в камне, металле, кирпиче, бетоне.

Список использованной литературы

1. Архитектурная бионика. Под редакцией Ю.С. Лебедева - М. Стройиздат, 1990. -269с.

2. Вопросы бионики. Отв. ред. М.Г. Гаазе-Рапопорт, М., 1967.

3. Бондарь, Е.В. Социальная экология: Учебное пособие / В.Бондарь. Ставрополь: Изд-во СГУ, 2005.- 149 с.

4. «Мастерская природы» Художник А.Семенцов-Огиевский -М.: Изобразительное искусство,1981г.

5. Ресурсы интернета: www.wikipedia.org http://www.wikipedia.org

Размещено на Allbest.ru

...

Подобные документы

    Архитектурно-строительная бионика. Принципы "зеленой" (органической) архитектуры. Творчество Р. Пиетиля. Основные постройки Аалто. Проект инженера-мостовика Г. Эйфеля. Аналогия строения стеблей злаков и некоторых современных высотных сооружений.

    курсовая работа , добавлен 15.09.2013

    Архитектурный стиль как совокупность характерных черт и признаков архитектуры. История и основные этапы развития архитектуры времен Античности, Средневековья, Возрождения, барокко, классицизма. Факторы, повялившие на формирование современной архитектуры.

    презентация , добавлен 05.12.2013

    Город как природно-техногенная система. Зонирование территории городов - природные аналогии. Физические факторы в городах. Оценка воздействия физических факторов в городской среде. Архитектурная бионика, использование природных аналогий в архитектуре.

    реферат , добавлен 15.10.2014

    Развитие доминирующих типов монументального строительства. Комбинация базилики и центрического сооружения. Характеристика типов структур и конструкций в архитектуре Византии. Основные композиционные типы церковных сооружений в романской архитектуре.

    контрольная работа , добавлен 11.04.2019

    Понятие архитектуры как искусства и науки строить, проектировать здания и сооружения. Архитектурные стили, востребованные в архитектуре, их применение в строительстве. Особенности византийского и готического стилей. Связь развития архитектуры и времени.

    презентация , добавлен 18.05.2015

    Сущность и специфика львовского классицизма, его отражение в архитектуре города. Распространение данного направления в конце XIX века. Исторические предпосылки развития эклектики. Развитие нового направления в архитектуре Львова - модерна в ХХ веке.

    презентация , добавлен 18.12.2010

    Появление новых течений в архитектуре. Принципы архитектуры постмодернима. Философия Альдо Росси и ее воплощение в архитектуре. Приемы и принципы постмодернистской архитектуры. Работа с архитектурным объектом как с "текстом" и в пространстве смыслов.

    реферат , добавлен 30.03.2015

    Священные, религиозные и святые здания. Стили храмовой архитектуры. Восточная школа культовой архитектуры. Архитектура Древнего Китая. Религии, оставившие свой след в архитектуре Китая. Основные исторические этапы развития китайской культовой архитектуры.

    реферат , добавлен 25.05.2012

    История происхождения, особенности формирования и характеристика стиля барокко, его роль в мировой архитектуре. Описание храмовой архитектуры эпохи барокко. Специфические черты русского барокко, сущность и значение пятиглавых храмов в его архитектуре.

    реферат , добавлен 17.04.2010

    Стиль архитектуры модерна и его принципиальные отличия. Причины его появления и заката. Пути развития и различные течения модерна в России. Орнамент как органическая часть сооружения. Примеры использования живописью и графикой приемов орнаментализации.

Введение

Одно из научных направлений, которое оформилось относительно недавно, но уже успело прочно войти в повседневную жизнь, стала бионика. Бионика − это прикладная наука об использовании в технических устройствах и принципах организации различных систем свойств и функций природных объектов. С помощью бионики человечество пытается привнести достижения природы в собственные технические и общественные технологии.

Достигнув определённого потолка в развитии искусственных механизмов, люди для дальнейшего поступательного движения вперёд стремятся позаимствовать те принципы и методы, с помощью которых созданы и функционируют живые организмы.

Неофициальный титул «отца бионика» принадлежит Леонардо да Винчи. Этот великий гений в истории цивилизации первым попытался использовать опыт природы при построении рукотворных машин. Из его чертежей и записей ясно, что при разработке собственного летательного аппарата главная роль им отводилась воспроизведению того же механизма, с помощью которого птицы машут крыльями и создают подъёмную силу. Эти идеи да Винчи были невостребованными вплоть до прошлого столетия, когда под воздействием развития кибернетики учёные обратили пристальное внимание на деятельность так называемых «живых систем» (то есть объектов природы). Окончательно как наука бионика оформилась в 1960 году на симпозиуме учёных в Дайтоне.

На современном этапе выделяют три направления в бионике: биологическое, которое рассматривает процессы внутри биологических систем; теоретическое, занимающееся созданием математических (компьютерных) моделей этих процессов; и техническое, которое отвечает за использование созданных бионических моделей для воплощения в жизнь посредством создания инженерных сооружений или машин. На стыке теоретического и технического направлений бионики находится архитектура.

Пионером использования принципов бионики при сооружении зданий стал великий каталонский архитектор конца XIX − начала XX веков Антонио Гауди. Именно Гауди первым стал не просто привносить в архитектурные сооружения декоративные элементы природы, а придал постройкам характер окружающей среды. Профессиональные архитекторы, ландшафтные дизайнеры и просто ценители прекрасного до сих пор не перестают восхищаться гениальными архитектурными решениями Гауди при сооружении Парка Гуэля: чего стоит только своеобразная колоннада, выполненная в стиле античных портиков, представляющая из себя подобие сросшихся стволов деревьев.

Бионические принципы архитектуры в начале 1920-х годов воспринял и развил Рудольф Штайнер, после чего и началось широкое применение бионики при проектировании зданий и сооружений.

Благодаря развитию научных методов, расширению базы знаний и появлению возможности детального математического моделирования архитекторы прошлого пришли к выводу, что большинство архитектурных принципов и законов, над которыми человечество опытным путём проб и ошибок билось тысячелетиями, находилось у нас под самым носом, в природе. Поэтому главной задачей бионики в архитектуре является поиск в природных биологических системах оптимальных решений возникающих архитектурных задач. Идёт изучение законов формирования и структурообразования живых тканей, конструктивных систем живых организмов по принципу экономии материала, энергии и обеспечения надежности. Кроме того, изучение живой природы помогает архитекторам в создании новых, отвечающим современным требованиям и задачам, строительных материалов.

1. «ЗЕЛЕНАЯ» АРХИТЕКТУРА

Проблема экологии в архитектуре может стать ключевой в ближайшее десятилетие для всей строительной политики.

Свод принципов « зеленой» архитектуры:

Сохранение энергии.

Накопление энергии. Еще в ХIХ веке А. Гауди, устраивая световые шахты в многоэтажных домах, вводил в квартиры солнечный свет. В последние годы активно используются для накопления энергии солнечные батареи.

Сокращение объемов нового строительства, использование старых материалов, реконструкция существующих объектов.

Контакт с заказчиком, в рамках которого рождается оптимальное решение.

Уважение месту. Слияние архитектуры с природным окружением (подземные дома, зеленая кровля и т. п.).

Целостность. Взаимодействие всех перечисленных выше подходов.

В соответствии с принципами «зеленой» (органической) архитектуры каждую форму следует рассматривать как организм, который развивается в соответствии с законом своего собственного существования, особого «ордера» в гармонии со своими функциями и окружением, как растение или другие живые организмы.

Термин «органический» применяется преимущественно в трех значениях. В первом случае «органический» обозначает «следующий природе своего назначения и материалов» (тектоничный). При этом под назначением понимают не только практические, но и духовные потребности людей. Второе и наиболее характерное значение термина «органический» означает «подчиненный условиям природного ландшафта», т.е. климатическим условиям среды и совокупности ее эстетических качеств. Третье значение понятия - следующий природным формам как образцам (бионический). Такую интерпретацию термина необходимо принимать не как использование биологических метафор и натуралистического подхода. Прямое сходство форм противоречит явному различию функций. Ни растительные, ни биологические формы не могут быть образцами для копирования. В то же время нельзя исключать эстетического влияния природных форм на архитектуру: об этом говорит современная практика. Один из главных представителей органической архитектуры Ф. Л. Райт решительно отвергал архитектуру, способную «переехать в любое место». По мнению мастера «… каждое здание, предназначенное для человека, должно быть составной частью ландшафта, его чертой, родственной местности и неотъемлемой от нее. Мы надеемся, что оно останется там, где стоит, на долгое время. Ведь дом - не фургон…». Он постоянно подчеркивал необходимость связи с землей: земля уже имеет форму. Связи построек Ф. Л. Райта с ландшафтом строились также на использовании природных материалов. Поэтому он с огромным уважением относился к историческому опыту. Искусство архитектуры древних, по убеждению архитектора, было основано на применении местных материалов в соответствии с их свойствами. Кроме того, в органичном здании ничто не является законченным само по себе, но является законченным лишь как часть целого. Таким образом, по существу, Райт отвергал классицистический принцип организации целого из законченных по своей структуре элементов. Он отождествлял искусственные формы с человеческим организмом, уподобляя, например, электропроводку нервной системе. Однако на практике архитектурные формы Райта подчиняются собственным, специфическим законам формообразования, не имеющим ничего общего с миром биологических форм.

Безусловно, один из самых значительных представителей органической архитектуры - финский архитектор А. Аалто. Однако он обращается к природным формам не только как к контексту, но и как к образцам структурной организации и связей со средой. Их мастер обнаруживает на системном уровне, где налицо определенное единство всех целостных объектов, как природных, так и созданных человеком. Поэтому его произведения не имеют ничего общего с имитацией природных образцов. Здесь применяются гибкие принципы квазистандартизации, используемые живой природой. На одной из своих лекций в Осло А. Аалто заявил: « ... самым лучшим комитетом по стандартизации является сама природа. Но природа производит свою стандартизацию только на самых малых единицах измерения всего живого - на клетках. В результате работы природы появилось несметное количество живых, изменяемых форм, разнообразие которых не поддается описанию. Архитектура должна подражать неизмеримому богатству постоянно изменяющихся форм мира живой материи...».

Рисунок 1 − Алвар Аалто, Концертный зал «Финляндия» в Хельсинки

В постройках Аалто богато используется дерево.

Основными постройками Аалто являются:

1.Санаторий в Паймио

2.Выборгская библиотека

.Вилла Майре

.Бейкер-хаус

.Дворец «Финляндия»

.Политехнический институт в Отаниеми

Рисунок 2 − Алвар Аалто, чайный столик

Сегодня в Финляндии органическая архитектура представлена творчеством Р. Пиетиля, который не считает себя прямым последователем А. Аалто. Однако его обращение к природе, безусловно, спровоцировано мыслями его идейных предшественников. Пиетил Р. считает, что архитектура должна определяться микрогеографией, климатическими особенностями, материальными ресурсами данной местности. Это, по мнению мастера, делает замысел гуманным.

Рисунок 3 − Р. Пиетил, университетский центр Диполи

В то же время его творчество находится под несомненным влиянием мастеров других направлений, которые разделяли принципы органического развития архитектурных форм. К ним можно отнести, в первую очередь, экспрессионистов Б. Таута и Х. Херинга.

Наиболее важный аспект деятельности Р. Пиетиля связан со взглядом на природу как на определенный контекст. Здания должны стать его продолжением. Такое отношение к природе основано на философии, которую сам мастер называет «экологической семантикой».

Следуя за Ф.Л. Райтом, Р. Пиетил считает, что учет экологических факторов, а также их выражение в архитектурных формах, может привести к исчезновению противоречий между зданиями и природой. С другой стороны, архитектор пытается соединить свои идеи с культурными традициями. Например, он находит необходимым тщательное изучение культурного этнического наследия северных арктических районов Европы и Азии. При этом, правда, не уточняется, что подразумевается под сутью этого наследия. В отличие от А. Аалто, Р. Пиетил рассматривает природу как контекст, делая акцент на структурные особенности и стремясь найти ценности сооружения в связи с эстетическими особенностями места. Он считает, что до сих пор мы строили вопреки природе и теперь, наконец, наступило время строить так, чтобы архитектурные формы становились частью или продолжением природы. Одновременно отвергается и «Модулор» Л. Корбюзье, как концепция постоянных эстетических ценностей.

Для Р. Пиетиля эстетические качества архитектурной формы изменчивы, поскольку они определяются связями с изменчивым характером природной среды. Интеграция может быть решена двумя способами. В первом случае архитектура должна стремиться выразить единство и определенное тождество с природой. При этом тождественностью автор называет согласованность объемов и пространств. Другой способ интеграции, по мнению мастера, основан на том, что архитектура должна оставаться незаметной.

АРХИТЕКТУРНАЯ БИОНИКА

Архитектурная бионика в недавнем прошлом - осмысление природных форм в строительных конструкциях, новые возможности архитектурного формообразования. Архитектурная бионика сегодня (необионика) - попытка увязать экологические аспекты и высокие технологии с архитектурой.

Первые попытки использовать природные формы в строительстве предпринял А. Гауди, знаменитый испанский архитектор XIX века. Парк Гуэль, или как говорили раньше «природа, застывшая в камне», восхитительная архитектура частных вилл Каса Батло и Каса Мила.

Рисунок 4 − А. Гауди, парк Гуэль

Ничего подобного Европа и весь мир до А. Гауди не видели. Эти шедевры великого мастера дали толчок к развитию архитектуры в бионическом стиле.

В 1921 году подобные идеи нашли отражение в скульптурно-органическом сооружении Гетеанум, созданном по проекту немецкого философа Р. Штайнера.

Рисунок 5 − Р. Штайнер, Всемирный центр Антропософии − Гётеанум

С этого момента зодчие всего мира взяли бионику на «вооружение». Приверженцы бионики считают, что природа создала самые эстетически совершенные, прочные и оптимизированные конструкции. В одном из самых первых предложений немецкого архитектора Р. Дернаха предусматривалось погружение в морскую воду пузырчатых баллонов или мелкоячеистых сетей, играющих роль каркаса, обраставшего колониями микроорганизмов, которые постепенно должны были отвердевать. Эти полые известняковые формы предлагалось использовать для создания плавучих городов. Хилберц В. (США) исследовал возможность того же результата при помощи электричества (аналогия с образованием накипи).

К 100-й годовщине Великой французской революции в Париже была организована всемирная выставка. На территории этой выставки планировалось воздвигнуть башню, которая символизировала бы величие Французской революции и новейшие достижения техники. На конкурс поступило более 700 проектов, лучшим был признан проект инженера-мостовика Александра Г. Эйфеля. В конце ХIХ столетия 300 метровая башня, названная именем своего создателя, поразила весь мир ажурностью и красотой, стала своеобразным символом Парижа. Современные инженеры сделали неожиданное открытие: конструкция Эйфелевой башни в точности повторяет строение большой берцовой кости, легко выдерживающей тяжесть человеческого тела. Совпадают даже углы между несущими поверхностями. В области бионики известны также архитектурные опыты П. Нерви, С. Калатравы и др.

Рисунок 6 − П. Л. Нерви, Собор в Сан-Франциско

Сегодня бионика развивается во многих сферах. Архитектурно- строительная бионика изучает законы формирования, структурообразования живых тканей, занимается анализом конструктивных систем живых организмов, исследует принципы экономии ими материала, энергии и обеспечения надежности жизнедеятельности. Яркий пример архитектурно- строительной бионики - полная аналогия строения стеблей злаков и некоторых современных высотных сооружений.

Рисунок 7 − С. Калатрава, Павильон Квадраччи

Рисунок 8 − С. Калатрава, Телекоммуникационная башня Монжуик в Барселоне

В последние годы бионика подтверждает, что большинство человеческих изобретений уже « запатентовано» природой. Например, такое новшество ХХ века, как застежки «молния» и «липучки», было разработано на основе изучения строения пера птицы. В данном случае нити пера различных порядков, оснащенные крючками, обеспечивают надежное сцепление.

Известные испанские архитекторы М. Р. Сервера и Х. Плоз, активные приверженцы бионики, с 1985 года начали исследования различных динамических структур, а в 1991 году организовали общество поддержки инноваций в архитектуре. Группа под их руководством, в состав которой вошли архитекторы, инженеры, дизайнеры, биологи и психологи, разработала проект вертикального бионического города-башни. Через 15 лет он должен появиться в Шанхае (по прогнозам ученых, через 20 лет численность Шанхая может достигнуть 30 млн. человек). Город-Башня рассчитан на 100 тысяч чело-век. В основу проекта положен принцип конструкции дерева. Башня будет иметь форму кипариса высотой 1128 метров с обхватом у основания 133 на 100 метров, а в самой широкой точке - 166 на 133 метра. В башне планируется предусмотреть 300 этажей, расположены они будут в 12 вертикальных кварталах по 80 этажей. Между кварталами - перекрытия стяжки, которые играют роль несущей конструкции для каждого уровня − квартала. Внутри кварталов - разновысокие дома с вертикальными садами. Эта тщательно продуманная конструкция аналогична строению ветвей и всей кроны кипариса. Основой башни должен стать свайный фундамент, построенный по аналогии с корневой системой дерева. Ветровые колебания верхних этажей предполагается свести к минимуму, так как воздух может легко проходить сквозь конструкцию башни. В качестве облицовки будут использованы специальные пластичные материалы, имитирующие пористую поверхность кожи.

В архитектурно-строительной бионике большое внимание уделяется новым строительным технологиям. Например, в области разработок эффективных и безотходных строительных технологий перспективным направлением является создание слоистых конструкций. Идея заимствована у глубоководных моллюсков. х прочные ракушки состоят из чередующихся жестких и мягких пластинок. Когда жесткая пластинка трескается, то деформация поглощается мягким слоем и трещина не идет дальше.

Почему же при современном уровне развития техники природа настолько опережает человека? Во-первых, чтобы понять устройство и принцип действия живой системы, смоделировать ее и воплотить в конкретных конструкциях и приборах, нужны универсальные знания. Сегодня, после длительного процесса дробления научных дисциплин, только начинает обозначаться потребность в такой организации знаний, которая позволила бы охватить и объединить их на основе единых всеобщих принципов. Во-вторых, в живой природе постоянство биологических систем поддерживается за счет их непрерывного восстановления, поскольку в данном случае мы имеем дело со структурами, которые непрерывно разрушаются и восстанавливаются. Каждая клетка имеет свой период деления, свой цикл жизни. Во всех живых организмах процессы распада и восстановления компенсируют друг друга, и вся система находится в динамическом равновесии, что дает возможность приспосабливаться, перестраивая свои конструкции в соответствии с изменяющимися условиями. Основным условием существования биологических систем является их непрерывное функционирование. Технические системы, созданные человеком, не имеют внутреннего динамического равновесия процессов распада и восстановления, и в этом смысле они статичны. Тем не менее, на сегодняшний день уже имеется богатый опыт строительства бионических зданий, сооружений и целых городов. Современное воплощение органической архитектуры можно наблюдать в шанхайском «кипарисе», в здании правления NMB Bank (Нидерланды), здании Сиднейской оперы (Австралия), здании Всемирного выставочного комплекса (Монреаль), небоскребе SONY и музее плодов (Япония). Анализ построек позволяет понять, что спектр изучения этого направления расширяется.


Рисунок 9 − Архитектурные утопии (группа « Архигрем»)

Заключение

высотный постройка пиетил стебель

В последнее время политические и общественные деятели говорят о экологических бедах, которые захлестнули практически весь мир. И если ранее разговоры шли, к «общим местам» вроде цунами, тайфунов и ли же засухи, то год от года обсуждения становятся все более конкретными.

Действительно, извержение вулкана Эйяфьядлайёкюдль, разлив нефти в Мексиканском заливе, землетрясение в Японии и многие другие печальные события заставляют задуматься о будущем.

А кто, как ни архитекторы лучше всего воплощают, тенденции времени. Именно поэтому проектировщики и строители сосредоточили внимание на проектах, способных улучшить жизнь людей и состояние природы в недалеком будущем.

Попытка «договориться» с природой, как считают сами архитекторы, это не просто выполнение обычной стандартной работы. Скорее это самый существенный вклад в будущее. То, чем и призван заниматься каждый человек.

Глобальное потепление, а также другие насущные вопросы, вроде засухи и наоборот учащающихся наводнений, стали предметами архитектурного проектирования во всем мире.

Список использованной литературы

1.Бабицкий А. Бионика в архитектуре [электронный ресурс] / А. Бабицкий. Режим доступа: #"justify">2.Ильичев В.И. Бионика - синтез биологии и техники [Текст] - М. Наука, 1994. − С. 28-35.

.Левина Е.К. Архитектура в гармонии с природой [электронный ресурс] / Е.К.Левина, Е.В. Кузьминых. − Режим доступа: #"justify">.Леденева Г.Л. Теория архитектурной композиции: курс лекций / Г.Л. Леденева. − Тамбов: Изд-во Тамб. гос. техн. ун- та, 2008. − 80с.

.Маслов В.Н. Пропорции и конфигурации в природе, архитектуре и дизайне: монография. − Ухта: УГТУ, 2007. − 55с.

Греция - родоначальница бионики, архитектуры будущего

Когда мы говорим об архитектуре, то сразу возникает ассоциация с симметрией, правильными геометрическими формами и, в целом, с неким пространством, отвоеванным у окружающей среды и подчиненным человеку.

Однако жители крупных городских агломераций и мегаполисов стали уставать от четких прямых линий и углов, стремясь вернуться к изначальным истокам, к природе и к её неповторимым в своем разнообразии формам.

Считается, что именно таким образом зародилась бионика и, вытекающая отсюда, органичная бионическая архитектура, подразделяющаяся, в свою очередь, на несколько направлений (биомиметика, био-тек и т.д.), с использованием конструктивных особенностей живых организмов - например, способность к обеспечению надежности и экономии энергии.

При этом пальма первенства как первооткрывателю бионики в архитектуре досталась великому испанскому архитектору Антонио Гауди. Но так ли это?

Примечательно, что само слово бионика, обозначающее сегодня прикладную науку о применении в технике свойств, принципов, функций и структур живой природы, происходит от греческого слова βίον (ви́он) - «живущее».

И, наверное, совсем не случайно, что всё началось именно со времен Древней Греции. Так, талантливый архитектор и инженер Древнего Рима - Марк Витрувий Поллион (I век до н. э.) описывает в своей известной книге «Десять книг об архитектуре», каким образом был изобретен знаменитый коринфский ордер.

По его словам, ученик греческого скульптора Поликлета, Каллимах (430 г. до н.э.), как-то заметил стоящую на могиле одной девушки в Коринфе корзину с игрушками, покрытую сверху квадратной плитой, при этом вокруг неё, следуя контурам плиты, проросли листья а́канфоса (акант, аканф), что и навело его на мысль о создании капители, окруженной листвой аканфа. Именно так и появился новый архитектурный ордер, названный коринфским.

Первая капитель, выполненная в этом стиле, увенчала колонну внутренней колоннады южной стороны храма Аполлона Эпикурейского в Бассах (территория между древнегреческими областями Аркадией, Трифилией и Мессинией), который был построен архитектором Парфенона - Иктином.

Впоследствии, на протяжении веков, коринфский ордер широко использовался в искусстве Римской империи, а также в архитектуре Ренессанса и классицизма и, в целом, по всему миру - от здания казны Иордании (I в. н.э.) до Верховного суда США (Вашингтон, 1932-1935 гг.) и т.д.

В Афинах ярким образцом коринфского ордера является храм Зевса Олимпийского (Олимпейон), в то время как в самом Коринфе в наши дни такой колонной украшено одно-единственное здание - Национального банка.

Что касается аканфа (acanthus), то это южное декоративное растение распространено по всей Греции. И кто бы мог подумать, что стилизованное изображение его листьев будет использоваться, прежде всего, для орнамента капителей коринфского и композитного ордеров (сочетание элементов ионического и коринфского ордера), а также в качестве декора фризов и карнизов, тогда как само растение приобретет невиданную славу.

Первым, кто отказался от обычной имитации природных форм, что было очень распространено в эпоху модерна, стал австрийский философ, эзотерик и архитектор Рудольф Штейнер. По его проекту в начале ХХ века был построен Гётеанум в Дорнахе (Швейцария) - Всемирный центр антропософского движения, названный именем Иоганна Гёте, элементы которого носили символический смысл, иллюстрируя метаморфозы человеческого духа. К сожалению, первоначальное здание не сохранилось до наших дней в связи с поджогом. Сейчас на этом месте стоит второе здание Гётеанума, с характерными текучими формами.

Наиболее яркими образцами бионической архитектуры на сегодня считаются следующие здания и архитектурные комплексы:

Парк Гуэля, Дом Мила, собор Саграда-Фамилия (Барселона, Испания) – архитектор Антонио Гауди

О парке Гуэля так и говорят: «Природа, застывшая в камне», тогда как Дом Мила (1906–1910 гг.) известен новаторской системой естественной вентиляции, которая позволила отказаться от кондиционеров. В свою очередь, особенностью многовекового проекта собора Саграда-Фамилия (с 1882 г.) является то, что декоративные элементы здания воссоздают местную флору и фауну.

Эйфелева башня (Париж, Франция) – архитектор Гюстав Эйфель, 1889 г.

Необычный, инновационный для своего времени проект. Конструкция Эйфелевой башни представляет собой не что иное, как «копию» большой берцовой кости, легко выдерживающей тяжесть человеческого тела.

Останкинская телебашня (Москва, Россия) - архитектор Николай Никитин, 1960-1967 гг.

Одно из высочайших зданий Европы. Прообразом башни стала перевернутая лилия, с крепкими лепестками и толстым стеблем.

Музей плодов (Яманаши, Япония) – архитектор Ицуко Хасегава (1993-1995 гг.)

Выставочный комплекс, объединяющий в себе наземные и подземные строения, словно вросшие в пологий склон. Расположен в парке, с видом на гору Фудзи. Представляет собой метафору семян, небрежно брошенных в благодатную почву. С виду прозрачные сетчатые оболочки зданий напоминают скорлупу сказочных орехов.

Город искусств и наук (Валенсия, Испания) - Сантьяго Калатрава, 1996 г.

Современный комплекс из пяти строений и целого ряда, чередующихся один за другим, парков, бассейнов и каналов. Здания буквально вырастают из окружающего ландшафта, словно огромные насекомые и морские животные.

В этом случае речь идет о сочетании бионики и высоких технологий, благодаря которому в архитектуре зародилось новое движение - био-тек, то есть совмещение природных форм и инженерии. Стиль этот удивительно гармонично вписывается в городской и природный ландшафт.

Сюда же можно отнести и другие творения Калатравы – Телекоммуникационную башню Монжуик в Барселоне (1992 г.) и Научный музей в Валенсии (1996 г.), а также Сиднейский оперный театр (1996 г.), который из-за необычной кровли, состоящей из серии «раковин», часто сравнивают с парусным кораблем, приготовившемуся к отплытию.

Музей Гуггенхайма (Бильбао, Испания) - архитектор Фрэнк Гери, 1997 г.

Формы музейного здания напоминают футуристический корабль для межзвездных путешествий. Стоит на берегу реки Нервьон, представляя собой живую материю, воплощенную в металле.

Оперный театр (Гуанчжоу, Китай) – архитектор Заха Хадид, 2005 г.

Британский архитектор с арабским происхождением. Первая женщина-архитектор, удостоенная Притцкеровской премии.

Использование органических форм и бионики наблюдаются и в других её проектах - например, в зданиях Arts Centre в Абу-Даби (ОАЭС, 2011 г.) и Культурного центра им. Гейдара Алиева в Баку (Азербайджан) – премия 2014 Design of the Year.

Строящийся город-кипарис (Шанхай, Китай) - архитекторы Хавьер Пиоф и Мария Сервера

Башня-город из 300 этажей высотой более 1.200 м, похожая внешне на кипарис.

И, наконец, интереснейший проект музея современного искусства в Венеции (из коллекции американского мецената и коллекционера искусства XX века Пегги Гуггенхайм), представляющий собой ещё одну восхитительную инсталляцию, которая позволяет увидеть и понять органичность и эргономичность биоморфного направления в архитектуре.