Важное значение для определения уровня пожарной безопасности и выбора средств и мер профилактики и тушения пожара должны пожароопасные свойства веществ и материалов.

Пожаровзрывоопасность веществ и материалов - это совокупность свойств, характеризующих их склонность к возникновению и распространению горения, особенности горения и способность подвергаться тушению возгораний. По этим показателям выделяют три группы горючести материалов и веществ: негорючие, трудногорючие и горючие.

Негорючие (несгораемые) - вещества и материалы, способные к горению или обугливание в воздухе под воздействием огня или высокой температуры. Это материалы минерального происхождения и изготовленные на их основе материалы - красный кирпич, силикатный кирпич, бетон, камень, асбест, минеральная вата, асбестовый цемент и другие материалы, а также большинство металлов. При этом негорючие вещества могут быть пожароопасными, например, вещества, выделяющие горючие продукты при взаимодействии с водой.

Трудногорючие (трудно сгораемые) - вещества и материалы, способные вспыхивать, тлеть или обугливаться в воздухе от источника зажигания, но не способные самостоятельно гореть или обугливаться после его удаления (материалы, содержащие горючие и несгораемые компоненты, например, древесина при глубоком пропитке антипиренами, фибролит и т. д.);

Горючие (сгораемые) - вещества и материалы, способные самовозгораться, а также вспыхивать, тлеть или обугливаться от источника зажигания и самостоятельно гореть после его удаления.

В свою очередь, в группе горючих веществ и материалов выделяют легковоспламеняющиеся вещества и материалы - это вещества и материалы, способные воспламеняться от кратковременного (до ЗО с) воздействия источника зажигания низкой энергии.

С точки зрения пожарной безопасности, решающее значение имеют показатели взрывопожароопасных свойств горючих веществ и материалов. ГОСТ 12.1.044-89 предусматривает более 20 таких показателей. Необходимый и достаточный для оценки пожаровзрывоопасности конкретного объекта перечень этих показателей зависит от агрегатного состояния вещества, вида горения (гомогенное или гетерогенное) и определяется специалистами.

В таблице 22.1 приведены данные по основным показателям пожароопасных свойств веществ различного агрегатного состояния, которые используются при определении категорий взрывоопасности помещений и взрывоопасных и пожароопасных зон в помещениях и вне их:

температура вспышки - это наименьшая температура вещества, при которой в условиях специальных испытаний над ее поверхностью образуется пар или газы, способные вспыхивать от источника зажигания, но скорость их образования еще недостаточна для устойчивого горения, то есть имеет место только вспышка - быстрое сгорание горючей смеси, что не сопровождается образованием сжатых газов;

Температура воспламенения - это наименьшая температура вещества, при которой в условиях специальных испытаний вещество выделяет горючую пару или газы с такой скоростью, что после их зажигания от внешнего источника наблюдается возгорания - начало устойчивого пламенного горения.

Таблица 22.1.

Примечание. В табл. 22.1 знаком "+" обозначено наличие показателя для данного агрегатного состояния вещества, а знаком "-" - его отсутствие или незначимость.

Температура воспламенения используется при определении группы горючести веществ, при оценке пожарной опасности оборудования и технологических процессов, связанных с переработкой горючих веществ, при разработке мероприятий по обеспечению пожарной безопасности.

Температура самовоспламенения - это наименьшая температура вещества, при которой в условиях специальных испытаний происходит резкое увеличение скорости экзотермических объемных реакций, что приводит к возникновению пламенного горения или взрыва при отсутствии внешнего источника пламени. Температура самовоспламенения вещества зависит от ряда факторов и изменяется в широких пределах. Наиболее значительна зависимость температуры самовоспламенения от объема и геометрической формы горючей смеси. С увеличением объема горючей смеси при неизменной ее форме температура самовоспламенения уменьшается, так как уменьшается площадь теплоотдачи на единицу объема вещества и создаются более благоприятные условия для накопления тепла в горючей смеси. При уменьшении объема горючей смеси температура ее самовоспламенения повышается.

Для каждой горючей смеси существует критический объем, в котором самовозгорания не происходит вследствие того, что площадь теплоотдачи, приходящаяся на единицу объема горючей смеси, настолько велика, что скорость теплообразования за счет реакции окисления даже при очень высоких температурах не может превысить скорости теплоотдачи. Это свойство горючих смесей используется при создании препятствий для распространения пламени. Значение температуры самовоспламенения используется для выбора типа взрывозащищенного электрооборудования, при разработке мероприятий по обеспечению пожаровзрывобезопасности технологических процессов, а также при разработке стандартов или технических условий на вещества и материалы.

Температура самовоспламенения горючей смеси значительно превышает на сотни градусов.

НКПРП и ВКМПП - соответственно нижняя и верхняя концентрационные пределы распространения пламени - это минимальная и максимальная объемная (массовая) доля горючего вещества в смеси с данным окислителем, при которых возможно возгорание (самовозгорание) смеси от источника зажигания с последующим распространением пламени я по смеси на любое расстояние от источника зажигания.

Смеси, содержащие горючее вещество ниже НКПРП или выше ВКМПП, гореть не могут: в первом случае - при недостаточном количестве горючего вещества, а во втором - окислителя. Наличие зон негорючих концентраций веществ и материалов позволяет выбрать такие условия их хранения, транспортировки и использования, при которых исключается возможность возникновения пожара или взрыва. Горючие пары и газы с НКПРП до 10% по объему воздуха составляют особую взрывоопасность.

Значительную взрывную и пожарную опасность представляют различные горючие пылевидные вещества, особенно во взвешенном состоянии. В зависимости от значения НКМ распространения пламени пыль делится на взрыво- и пожароопасный. При значении НКПРП менее 65 г / м3 пыль является взрывоопасным (пыль серы, муки, сахара), а при больших значениях НКПРП - пожароопасным (пыль древесины, табака).

КМПП включаются в стандартов, технических условий на газы, легковоспламеняющиеся жидкости и твердые вещества, способные образовывать взрывоопасные газо-, паро- и пылевоздушной смеси, при этом для пыли устанавливается только НКПРП, потому что большие концентрации пилозавису почти не могут быть достигнуты в открытом пространстве, а при любых концентраций пыли сгорает только та его часть, которая обеспечена окислителем. Значение концентрационных границ применяются при определении категории помещения и класса зон по взрывопожарной и пожарной опасности при расчете предельно допустимых взрывобезопасных концентраций газов, паров и пыли в воздухе рабочей зоны с потенциальным источником зажигания, при разработке мероприятий по обеспечению пожарной безопасности.

* НКМ и ивкм ~~ соответственно нижняя и верхняя температурные пределы распространения пламени - температуры материала (вещества), при которых его (ее) насыщенный пар или горючие летучие образуют в окислительной среде концентрации, равные нижней и верхней концентрационным пределам распространения пламени я.

Значение ТМПП используются при разработке мероприятий по обеспечению пожаровзрывобезопасности объектов при расчете пожаровзрывобезопасными режимов работы технологического оборудования, при оценке аварийных ситуаций, связанных с разливом горючих жидкостей, для расчета КМПП т. Безопасной, с точки зрения вероятности самовозгорания газовоздушной смеси, принято считать температуру на 10 ° С меньше нижнюю или на 15 ° С выше верхний температурный предел распространения пламени для данного вещества.

Наличие приведенных в табл. 22.1 показателей пожароопасных свойств веществ различного агрегатного состояния связана с особенностями их горения.

Твердые горючие вещества в большинстве случаев сами по себе в твердом состоянии не горят, а горят горючие летучие продукты их распада под действием высоких температур в смеси с воздухом - пламенным горением. Таким образом, горение твердых веществ в большинстве случаев связано с переходом их горючей составляющей в другое агрегатное состояние - газовый. И только твердые горючие вещества с высоким содержанием горючих веществ (антрацит, графит и т. Д.) Могут гореть в твердом агрегатном состоянии - почти без пламени. Поэтому твердые горючие вещества, в целом, более инертны относительно возможного возгорания, а большинство приведенных в табл. 22.1 показателей пожароопасных свойств для твердых веществ, за исключением Ьмйм и ЬсзаииМ, не имеют существенного значения.

Для твердых веществ, в целом, величины £ мйч и £ глои ((колеблются в пределах (2 ... 5 o и (г) ° С.

Сгораемые жидкости. Характерным для процесса горения этих жидкостей является то, что сами жидкости не горят, а горит их пара в смеси с воздухом. Если над поверхностью сгораемой жидкости концентрация паров будет меньше НКПРП, то зажечь такую жидкость от внешнего источника зажигания невозможно, не доведя температуру жидкости до значения, превышающего итм. Таким образом, горение жидкостей связано с переходом их из одного агрегатного состояния (жидкости) в инпгий (пару). В связи с этим для оценки взрывопожароопасных свойств горючих жидкостей имеют значение все показатели, приведенные в табл. 22.1. По гт горючие жидкости делятся на 5 классов:

Первые 3 класса жидкостей условно относят к легковоспламеняющимся (ЛВЖ). Характерной особенностью для ЛВЖ является то, что большинство из них, даже при обычных температурах в производственных помещениях, могут образовывать паровоздушные смеси с концентрацией в пределах распространения пламени, то есть взрывоопасные паровоздушные смеси.

4-й и 5-й классы жидкостей по tm принадлежат к горючим (ГР). Паровоздушные смеси с концентрациями в пределах распространения пламени для ОС могут иметь место при температурах, нехарактерных для производственных помещений.

Горючие газы горят в смеси с воздухом в концентрациях в пределах НКПРП - ВКМПП, и такие смеси, газы, в общем, создают без агрегатных переходов веществ. Поэтому горючие газы имеют большую готовность к горению, чем твердые горючие вещества и горючие жидкости, более опасными с точки зрения взрывопожарной безопасности, а соответствующие их свойства характеризуются только тремя показателями - 4 ^, НКПРП и ВКМПП (см. Табл. 22.1).

Пылевоздушные смеси - смеси с воздухом измельченных до размеров частиц до 850 мкм твердых горючих веществ. Процесс горения пыли, в целом, подобный процесса горения твердых веществ. Но наличие большого удельной поверхности (отношение площади поверхности пылинок к их массе) пылинок, которая контактирует с окислителем (воздухом), и способность к быстрому их прогрева по всей массе под действием источника зажигания, делают пыль более опасным с точки зрения пожарной безопасности, чем твердые вещества, из которых он создан. Для оценки взрывопожароопасных свойств пыли используют, в основном, показатели t3aüJtl и tr3auM и НКПРП (см. Табл. 22.1).

По способности к возгоранию и особенностями горения пыль разделяют на взрывоопасный и пожароопасный.

К взрывоопасного принадлежит пыль с НКПРП до 65 г / м3. При этом выделяют особенно взрывоопасная пыль с НКПРП до 15 г / м и взрывоопасный - НКПРП составляет 15 ... 65 г / м3.

К пожароопасному принадлежит пыль с НКПРП более 65 г / м3. При этом пыль с игмйм до 250 ° С относится к особо пожароопасного, а при исзайм> 250 ° С - к пожароопасному.

Самовозгорание

Некоторые вещества при определенных условиях обладают способностью к самовозгоранию - без нагрева их внешним источником до £ "айм. Выделяют три вида самовозгорания:

Тепловое;

Химическое;

Микробиологическое.

Суть теплового самовоспламенения заключается в том, что склонны к такому самовозгорания вещества при их нагреве до сравнительно незначительных температур (60 ... 80 ° С), за счет интенсификации процессов окисления и недостаточного теплоотвода, саморозигриваються, что, в свою очередь, приводит к повышению интенсивности окисления и, наконец, к самовозгоранию.

К химическому самовозгоранию склонны вещества, в состав которых входят неорганические (ненасыщенные) углеводороды, включающие только углерод и водород, при наличии двойных и тройных связей между атомами углерода.

Для таких углеводородов характерно присоединение по линии этих связей окислителей, в том числе и галогенов, что сопровождается повышением температуры вещества и интенсивности дальнейшего окисления. При определенных условиях этот процесс может завершаться самовозгоранием. Химическому самовозгоранию способствует наличие в веществе соединений серы.

Угольная пыль, с повышенным содержанием соединений серы и ткани, пропитанные нефтепродуктами, в состав которых входят соединения серы, особенно опасные для самовозгорания.

К микробиологического самовозгорания склонны продукты растительного происхождения - трава, измельченная древесина, зерно и т. При определенных условиях влажности и температуры в растительных продуктах возникает паутинный глета - специфический ниткопавутиноподибний белый грибок. Его жизнедеятельность связана с повышением температуры. При температуре 80 ... 90 ° С паутинный глета превращается в тонкопористых, склонен к дальнейшему самоокисление с повышением температуры самовоспламенения.

Необходимым условием для рассматриваемых видов самовозгорания является наличие склонных к самовозгоранию веществ, окислителя и недостаточный отвод сопутствующего процессам окисления тепла в окружающую среду.

При получении веществ и материалов, применении, хранении, транспортировании, переработке и утилизации.

Для установления требований пожарной безопасности к конструкции зданий, сооружений и системам противопожарной защиты используется классификация строительных материалов по пожарной опасности.

Показатели пожаровзрывоопасности и пожарной опасности веществ и материалов

Перечень показателей, необходимых для оценки пожаровзрывоопасности и пожарной опасности веществ и материалов в зависимости от их агрегатного состояния, приведен в таблице 1 приложения к Федеральному закону ФЗ-123 («Технический регламент о пожарной безопасности»).

Методы определения показателей пожаровзрывоопасности и пожарной опасности веществ и материалов, устанавливаются нормативными документами по пожарной безопасности.

Показатели пожаровзрывоопасности и пожарной опасности веществ и материалов используются для установления требований к применению веществ и материалов и расчета пожарного риска.

Перечень показателей, необходимых для оценки пожарной опасности веществ и материалов в зависимости от их агрегатного состояния
Показатель пожарной опасности Вещества и материалы в различном агрегатном состоянии Пыли
газообразные жидкие твердые
Безопасный экспериментальный максимальный зазор ,
миллиметр
+ + - +
Выделение токсичных продуктов горения с единицы массы горючего,
килограмм на килограмм
- + + -
Группа воспламеняемости - - + -
Группа горючести + + + +
Группа распространения пламени - - + -
Коэффициент дымообразования, квадратный метр на килограмм - + + -
Излучающая способность пламени + + + +
Индекс пожаровзрывоопасности,
Паскаль на метр в секунду
- - - +
Индекс распространения пламени - - + -
Кислородный индекс, объемные проценты - - + -
Концентрационные пределы распространения пламени (воспламенения) в газах и парах, объемные проценты, пылях,
килограмм на кубический метр
+ + - +
Концентрационный предел диффузионного горения газовых смесей в воздухе,
объемные проценты
+ + - -
Критическая поверхностная плотность теплового потока,
Ватт на квадратный метр
- + + -
Линейная скорость распространения пламени,
метр в секунду
- - + -
Максимальная скорость распространения пламени вдоль поверхности горючей жидкости,
метр в секунду
- + - -
Максимальное давление взрыва,
Паскаль
+ + - +
Минимальная флегматизирующая концентрация газообразного флегматизатора,
объемные проценты
+ + - +
Минимальная энергия зажигания,
Джоуль
+ + - +
Минимальное взрывоопасное содержание кислорода,
объемные проценты
+ + - +
Низшая рабочая теплота сгорания,
килоДжоуль на килограмм
+ + + -
Нормальная скорость распространения пламени,
метр в секунду
+ + - -
Показатель токсичности продуктов горения,
грамм на кубический метр
+ + + +
Потребление кислорода на единицу массы горючего,
килограмм на килограмм
- + + -
Предельная скорость срыва диффузионного факела,
метр в секунду
+ + - -
Скорость нарастания давления взрыва,
мегаПаскаль в секунду
+ + - +
Способность гореть при взаимодействии с водой, кислородом воздуха и другими веществами + + + +
Способность к воспламенению при адиабатическом сжатии + + - -
Способность к самовозгоранию - - + +
Способность к экзотермическому разложению + + + +
Температура воспламенения ,
градус Цельсия
- + + +
Температура вспышки ,
градус Цельсия
- + - -
Температура самовоспламенения ,
градус Цельсия
+ + + +
Температура тления ,
градус Цельсия
- - + +
Температурные пределы распространения пламени (воспламенения),
градус Цельсия
- + - -
Удельная массовая скорость выгорания ,
килограмм в секунду на квадратный метр
- + + -
Удельная теплота сгорания ,
Джоуль на килограмм
+ + + +

Классификация веществ и материалов (за исключением строительных, текстильных и кожевенных материалов ) по пожарной опасности

Классификация веществ и материалов по пожарной опасности основывается на их свойствах и способности к образованию опасных факторов пожара или взрыва.

По горючести вещества и материалы подразделяются на следующие группы:
1) негорючие - вещества и материалы, неспособные гореть в воздухе. Негорючие вещества могут быть пожаровзрывоопасными (например, окислители или вещества, выделяющие горючие продукты при взаимодействии с водой, кислородом воздуха или друг с другом);
2) трудногорючие - вещества и материалы, способные гореть в воздухе при воздействии источника зажигания, но неспособные самостоятельно гореть после его удаления;
3) горючие - вещества и материалы, способные самовозгораться, а также возгораться под воздействием источника зажигания и самостоятельно гореть после его удаления.

Методы испытаний на горючесть веществ и материалов устанавливаются нормативными документами по пожарной безопасности .

Классификация строительных, текстильных и кожевенных материалов по пожарной опасности

Классификация строительных, текстильных и кожевенных материалов по пожарной опасности основывается на их свойствах и способности к образованию опасных факторов пожара.

Пожарная опасность строительных, текстильных и кожевенных материалов характеризуется следующими свойствами:
1) горючесть ;
2) воспламеняемость ;
3) способность распространения пламени по поверхности ;
4) дымообразующая способность ;
5) токсичность продуктов горения .

Скорость распространения пламени по поверхности

По скорости распространения пламени по поверхности горючие строительные материалы (в том числе напольные ковровые покрытия) в зависимости от величины критической поверхностной плотности теплового потока подразделяются на следующие группы:

1) нераспространяющие (РП1) , имеющие величину критической поверхностной плотности теплового потока более 11 киловатт на квадратный метр;

2) слабораспространяющие (РП2) , имеющие величину критической поверхностной плотности теплового потока не менее 8, но не более 11 киловатт на квадратный метр;

3) умереннораспространяющие (РП3) , имеющие величину критической поверхностной плотности теплового потока не менее 5, но не более 8 киловатт на квадратный метр;

4) сильнораспространяющие (РП4) , имеющие величину критической поверхностной плотности теплового потока менее 5 киловатт на квадратный метр ..

Дымообразующая способность

По дымообразующей способности горючие строительные материалы в зависимости от значения коэффициента дымообразования подразделяются на следующие группы:

1) с малой дымообразующей способностью (Д1) , имеющие коэффициент дымообразования менее 50 квадратных метров на килограмм;

2) с умеренной дымообразующей способностью (Д2) , имеющие коэффициент дымообразования не менее 50, но не более 500 квадратных метров на килограмм;

3) с высокой дымообразующей способностью (Д3) , имеющие коэффициент дымообразования более 500 квадратных метров на килограмм ..

Токсичность

По токсичности продуктов горения горючие строительные материалы подразделяются на следующие группы в соответствии с таблицей 2 приложения к Федеральному закону №123-ФЗ:

1) малоопасные (Т1) ;
2) умеренноопасные (Т2) ;
3) высокоопасные (Т3) ;
4) чрезвычайно опасные (Т4) .

Классификация горючих строительных материалов по значению показателя токсичности продуктов горения
Класс опасности Показатель токсичности продуктов горения в зависимости от времени экспозиции
5 минут 15 минут 30 минут 60 минут
Малоопасные более 210 более 150 более 120 более 90
Умеренноопасные более 70, но не более 210 более 50, но не более 150 более 40, но не более 120 более 30, но не более 90
Высокоопасные более 25, но не более 70 более 17, но не более 50 более 13, но не более 40 более 10, но не более 30
Чрезвычайно опасные не более 25 не более 17 не более 13 не более 10

Классификация отдельных видов веществ и материалов

Для напольных ковровых покрытий группа горючести не определяется.

Текстильные и кожевенные материалы по воспламеняемости подразделяются на легковоспламеняемые и трудновоспламеняемые. Ткань (нетканое полотно) классифицируется как легковоспламеняемый материал, если при испытаниях выполняются следующие условия:

1) время пламенного горения любого из образцов, испытанных при зажигании с поверхности, составляет более 5 секунд;

2) любой из образцов, испытанных при зажигании с поверхности, прогорает до одной из его кромок;

3) хлопчатобумажная вата загорается под любым из испытываемых образцов;

4) поверхностная вспышка любого из образцов распространяется более чем на 100 миллиметров от точки зажигания с поверхности или кромки;

5) средняя длина обугливающегося участка любого из образцов, испытанных при воздействии пламени с поверхности или кромки, составляет более 150 миллиметров.

Для классификации строительных, текстильных и кожевенных материалов следует применять значение индекса распространения пламени (I) - условного безразмерного показателя, характеризующего способность материалов или веществ воспламеняться, распространять пламя по поверхности и выделять тепло. По распространению пламени материалы подразделяются на следующие группы:

1) не распространяющие пламя по поверхности, имеющие индекс распространения пламени 0;

2) медленно распространяющие пламя по поверхности, имеющие индекс распространения пламени не более 20;

3) быстро распространяющие пламя по поверхности, имеющие индекс распространения пламени более 20.

Методы испытаний по определению классификационных показателей пожарной опасности строительных, текстильных и кожевенных материалов устанавливаются нормативными документами по пожарной безопасности

Представления об условиях протекания химической реакции в форме взрыва и формах превращения взрывчатых систем являются теоретической основой анализа вероятности возникновения взрывоопасных ситуаций на производстве и разработки системы мероприятий по обеспечению пожаровзрывобезопасности производства. Практически эта работа начинается с определения характеристик пожаровзрывоопасности обращающихся в данном технологическом процессе или образующихся в нем веществ или их смесей.

Номенклатура показателей пожаровзрывоопасности для оценки опасности действующих производств и методы их определения установлены ГОСТ 12.1.044–89 . Для каждой группы горючих материалов (газы, жидкости, пыли, твердые материалы) введен перечень показателей, необходимое количество которых определяется в соответствии с потребностями обеспечения безопасности конкретного технологического процесса. При этом были выделены показатели, обязательные для включения в стандарты и технические условия на вещества и материалы. Например, для горючих газов и пылей – группа горючести, концентрационные пределы распространения пламени (для пылей только нижний), температура самовоспламенения, способность взрываться при взаимодействии с водой, кислородом воздуха и другими веществами. Для жидкости кроме перечисленных показателей обязательными также являлись температуры вспышки и воспламенения и температурные пределы распространения пламени.

В соответствии с Федеральным законом от 22 июля 2008 г. № 123-ФЗ "Технический регламент о требованиях пожарной безопасности", вступившим в действие с 1 мая 2009 г. , номенклатура обязательных показателей была изменена.

Обязательными показателями для включения в техническую документацию являются:

  • а) для газов – группа горючести; температура самовоспламенения; концентрационные пределы распространения пламени; максимальное давление взрыва; скорость нарастания давления взрыва;
  • б) для жидкостей – группа горючести; температура вспышки; температура воспламенения; температура самовоспламенения; температурные пределы распространения пламени;
  • в) для твердых веществ и материалов (за исключением строительных материалов) – группа горючести; температура воспламенения; температура самовоспламенения; коэффициент дымообразования; показатель токсичности продуктов горения;
  • г) для твердых дисперсных веществ – группа горючести; температура самовоспламенения; максимальное давление взрыва; скорость нарастания давления взрыва; индекс взрывоопасности.

Оценка пожаровзрывоопасности веществ начинается с их классификации по горючести . Все вещества и материалы по данному признаку разделяют на три группы:

  • 1) негорючие (несгораемые), не способные к горению на воздухе. Негорючие вещества могут быть пожароопасными (например, окислители или вещества, выделяющие горючие продукты при взаимодействии с водой, кислородом воздуха или между собой);
  • 2) трудногорючие (трудносгораемые), способные гореть в воздухе при воздействии источника зажигания, но неспособные самостоятельно гореть после его удаления;
  • 3) горючие (сгораемые), способные самовозгораться, а также возгораться при воздействии источника зажигания и самостоятельно гореть после его удаления.

Способность взрываться и гореть при взаимодействии с водой, кислородом воздуха и другими веществами при их контакте – качественный показатель, характеризующий особую пожаровзрывоопасность некоторых веществ. Он используется при категорировании помещений и зданий по взрывопожарной и пожарной опасности, выборе безопасных условий проведения технологических процессов и условий совместного хранения и транспортирования разных материалов.

Кроме того, при оценке пожаровзрывоопасности горючих жидкостей следует иметь в виду, что их горение осуществляется в паровой фазе. Жидкость сначала испаряется, ее пары образуют горючую смесь с воздухом, способную к самовоспламенению и горению. Для устойчивого горения жидкостей необходимо, чтобы скорость их испарения была достаточной для подпитывания горения в паровой фазе. Таким образом, с одной стороны, для жидкостей применимы те же показатели, что и для газовоздушных смесей, а с другой – необходимы дополнительные показатели, учитывающие специфику механизма воспламенения и горения. К числу таких показателей относятся температуры вспышки, воспламенения и температурные пределы распространения пламени.

Под вспышкой подразумевают быстрое сгорание горючей смеси, не сопровождающееся значительным повышением давления. Температура вспышки – это наименьшая температура конденсированного вещества, при которой в условиях специальных испытаний над его поверхностью образуются пары, способные вспыхивать в воздухе от источника зажигания; устойчивое горение при этом не возникает. Разработаны экспериментальные методики определения температуры вспышки в закрытом и открытом тигле, характеризующие соответственно условия их зажигания в замкнутом объеме (емкости, цистерны) и в открытом виде (при аварийном разливе).

Температура воспламенения – это наименьшая температура вещества, при которой в условиях специальных испытаний вещество выделяет горючие пары и газы с такой скоростью, что при воздействии на них источника зажигания наблюдается пламенное горение вещества, продолжающееся и после удаления источника зажигания.

Температурные пределы распространения пламени – это температуры вещества, при которых его насыщенный пар образует в окислительной среде концентрации, равные соответственно нижнему (нижний температурный предел) и верхнему (верхний температурный предел) концентрационным пределам распространения пламени.

В Техническом регламенте о требованиях пожарной безопасности установлена классификация пожароопасных и взрывоопасных зон. Она применяется применяется для выбора электротехнического и другого оборудования по степени их защиты, обеспечивающей их пожаровзрывобезопасную эксплуатацию в указанной зоне.

Пожароопасные зоны подразделяются на следующие классы:

  • 1) П-I – зоны, расположенные в помещениях, в которых обращаются горючие жидкости с температурой вспышки 61 °С и более;
  • 2) П-II – зоны, расположенные в помещениях, в которых выделяются горючие пыли или волокна;
  • 3) П-IIа – зоны, расположенные в помещениях, в которых обращаются твердые горючие вещества в количестве, при котором удельная пожарная нагрузка составляет не менее 1 МДж/м2;
  • 4) П-III – зоны, расположенные вне зданий, сооружений, строений, в которых обращаются горючие жидкости с температурой вспышки 61 °С и более или любые твердые горючие вещества.

Взрывоопасные зоны в зависимости от частоты и длительности присутствия взрывоопасной смеси подразделяются на следующие классы:

  • 1) 0-й класс – зоны, в которых взрывоопасная газовая смесь присутствует постоянно или хотя бы в течение одного часа;
  • 2) 1-й класс – зоны, расположенные в помещениях, в которых при нормальном режиме работы оборудования выделяются горючие газы или пары ЛВЖ, образующие с воздухом взрывоопасные смеси
  • 3) 2-й класс – зоны, расположенные в помещениях, в которых при нормальном режиме работы оборудования взрывоопасные смеси горючих газов или паров ЛВЖ с воздухом не образуются, а возможны только в результате аварии или повреждения технологического оборудования;
  • 4) 20-й класс – зоны, в которых взрывоопасные смеси горючей пыли с воздухом имеют нижний концентрационный предел воспламенения менее 65 г/м3 и присутствуют постоянно;
  • 5) 21-й класс – зоны, расположенные в помещениях, в которых при нормальном режиме работы оборудования выделяются переходящие во взвешенное состояние горючие пыли или волокна, способные образовывать с воздухом взрывоопасные смеси при концентрации 65 г/м3 и менее;
  • 6) 22-й класс – зоны, расположенные в помещениях, в которых при нормальном режиме работы оборудования не образуются взрывоопасные смеси горючих пылей или волокон с воздухом при концентрации 65 г/м3 и менее, но возможно образование такой взрывоопасной смеси горючих пылей или волокон с воздухом только в результате аварии или повреждения технологического оборудования.
  • См. ГОСТ 12.1.044–89 (ИСО 4589–84) "Система стандартов безопасности труда. Пожаровзрывоопасность веществ и материалов. Номенклатура показателей и методы их определения", утвержденный постановлением Госстандарта СССР от 12 декабря 1989 г. № 3683.
  • Далее – Технический регламент о требованиях пожарной безопасности.

Показатели пожаровзрывоопасности и пожарной опасности веществ и материалов

1. Комментируемая , посвящена показателям пожаровзрывоопасности и пожарной опасности веществ и материалов. Определения указанных понятий даны в п. 21 и 29 ст. 2 комментируемого Закона соответственно: пожарная опасность веществ и материалов - состояние веществ и материалов, характеризуемое возможностью возникновения горения или взрыва веществ и материалов (п. 21); пожаровзрывоопасность веществ и материалов - способность веществ и материалов к образованию горючей (пожароопасной или взрывоопасной) среды, характеризуемая их физико-химическими свойствами и (или) поведением в условиях пожара (п. 29).

Часть 1 комментируемой статьи в отношении перечня показателей, необходимых для оценки пожаровзрывоопасности и пожарной опасности веществ и материалов в зависимости от их агрегатного состояния, отсылает к таблице 1 приложения к комментируемому Закону (однако, в названии данной таблицы говорится о перечне показателей, необходимых для оценки только пожарной опасности веществ и материалов).

Указанная таблица основывается на номенклатуре показателей и их применяемости для характеристики пожаровзрывоопасности веществ и материалов, которые содержатся в п. 1.4 ГОСТ 12.1.044-89 "ССБТ. Пожаровзрывоопасность веществ и материалов. Номенклатура показателей и методы их определения", а также перечне показателей пожарной опасности технологических сред, который содержится в НПБ 23-2001 "Пожарная опасность технологических сред. Номенклатура показателей" (см. комментарий к таблице 1).

Согласно п. 1.2 ГОСТ 12.1.044-89 пожаровзрывоопасность веществ и материалов определяется показателями, выбор которых зависит от агрегатного состояния вещества (материала) и условий его применения. Как предусмотрено в п. 1.3 данного документа, при определении пожаровзрывоопасности веществ и материалов различают:

газы - вещества, давление насыщенных паров которых при температуре 25 °С и давлении 101,3 кПа превышает 101,3 кПа;

жидкости - вещества, давление насыщенных паров которых при температуре 25 °С и давлении 101,3 кПа меньше 101,3 кПа. К жидкостям относят также твердые плавящиеся вещества, температура плавления или каплепадения которых меньше 50 °С;

твердые вещества и материалы - индивидуальные вещества и их смесевые композиции с температурой плавления или каплепадения больше 50 °С, а также вещества, не имеющие температуру плавления (например, древесина, ткани и т.п.);

пыли - диспергированные твердые вещества и материалы с размером частиц менее 850 мкм.

2-3. Часть 2 комментируемой статьи в отношении методов определения показателей пожаровзрывоопасности и пожарной опасности веществ и материалов, приведенных в таблице 1 приложения к комментируемому Закону, отсылает к нормативным документам по пожарной безопасности. Основным таким актом является тот же ГОСТ 12.1.044-89 "ССБТ. Пожаровзрывоопасность веществ и материалов. Номенклатура показателей и методы их определения". В этом же документе содержатся положения, детализирующие правило ч. 3 комментируемой статьи о том, что показатели пожаровзрывоопасности и пожарной опасности веществ и материалов используются для установления требований к применению веществ и материалов и расчета пожарного риска. В частности, в разд. 2 ГОСТ 12.1.044-89 в отношении показателей пожаровзрывоопасности предусмотрено следующее (о показателе "горючесть" см. комментарий к ст. 12 Закона, о показателях "токсичность продуктов горения", "дымообразующая способность" и "индекс распространения пламени" - к ст. 13 Закона).

Температура вспышки.

Температура вспышки - наименьшая температура конденсированного вещества, при которой в условиях специальных испытаний над его поверхностью образуются пары, способные вспыхивать в воздухе от источника зажигания; устойчивое горение при этом не возникает. Вспышка - быстрое сгорание газопаровоздушной смеси над поверхностью горючего вещества, сопровождающееся кратковременным видимым свечением.

Значение температуры вспышки следует применять для характеристики пожарной опасности жидкости, включая эти данные в стандарты и технические условия на вещества; при определении категории помещений по взрывопожарной и пожарной опасности в соответствии с требованиями норм технологического проектирования, при разработке мероприятий по обеспечению пожарной безопасности и взрывобезопасности в соответствии с требованиями ГОСТ 12.1.004-91 ГОСТ 12.1.010-76* Допускается использовать экспериментальные и расчетные значения температуры вспышки.

Сущность экспериментального метода определения температуры вспышки заключается в нагревании определенной массы вещества с заданной скоростью, периодическом зажигании выделяющихся паров и установлении факта наличия или отсутствия вспышки при фиксируемой температуре.

Температура воспламенения.

Температура воспламенения - наименьшая температура вещества, при которой в условиях специальных испытаний вещество выделяет горючие пары и газы с такой скоростью, что при воздействии на них источника зажигания наблюдается воспламенение. Воспламенение - пламенное горение вещества, инициированное источником зажигания и продолжающееся после его удаления.

Значение температуры воспламенения следует применять при определении группы горючести вещества, оценке пожарной опасности оборудования и технологических процессов, связанных с переработкой горючих веществ, при разработке мероприятий по обеспечению пожарной безопасности в соответствии с требованиями ГОСТ 12.1.004-91 "ССБТ. Пожарная безопасность. Общие требования" и ГОСТ 12.1.010-76* "ССБТ. Взрывобезопасность. Общие требования", а также необходимо включать в стандарты и технические условия на жидкости. Допускается использовать экспериментальные и расчетные значения температуры воспламенения.

Сущность экспериментального метода определения температуры воспламенения заключается в нагревании определенной массы вещества с заданной скоростью, периодическом зажигании выделяющихся паров и установлении факта наличия или отсутствия воспламенения при фиксируемой температуре.

Температура самовоспламенения.

Температура самовоспламенения - наименьшая температура окружающей среды, при которой в условиях специальных испытаний наблюдается самовоспламенение вещества. Самовоспламенение - резкое увеличение скорости экзотермических объемных реакций, сопровождающееся пламенным горением и/или взрывом.

Значение температуры самовоспламенения следует применять при определении группы взрывоопасной смеси по ГОСТ Р 51330.2-99 (МЭК 60079-1А-75) "Электрооборудование взрывозащищенное. Часть 1. Взрывозащита вида "Взрывонепроницаемая оболочка". Дополнение 1. Приложение D. Метод определения безопасного экспериментального максимального зазора", ГОСТ Р 51330.5-99 (МЭК 60079-4-75) "Электрооборудование взрывозащищенное. Часть 4. Метод определения температуры самовоспламенения", ГОСТ Р 51330.11-99 (МЭК 60079-12-78) . "Электрооборудование взрывозащищенное. Часть 12. Классификация смесей газов и паров с воздухом по безопасным экспериментальным максимальным зазорам и минимальным воспламеняющим токам", ГОСТ Р 51330.19-99 (МЭК 60079-20-96) "Электрооборудование взрывозащищенное. Часть 20. Данные по горючим газам и парам, относящиеся к эксплуатации электрооборудования" для выбора типа взрывозащищенного электрооборудования, при разработке мероприятий по обеспечению пожаровзрывобезопасности технологических процессов в соответствии с требованиями ГОСТ 12.1.004-91 "ССБТ. Пожарная безопасность. Общие требования" и ГОСТ 12.1.010-76* "ССБТ. Взрывобезопасность. Общие требования", а также необходимо включать в стандарты или технические условия на вещества и материалы.

Сущность метода определения температуры самовоспламенения заключается во введении определенной массы вещества в нагретый объем и оценке результатов испытания. Изменяя температуру испытания, находят ее минимальное значение, при котором происходит самовоспламенение вещества.

Концентрационные пределы распространения пламени (воспламенения).

Нижний (верхний) концентрационный предел распространения пламени - минимальное (максимальное) содержание горючего вещества в однородной смеси с окислительной средой, при котором возможно распространение пламени по смеси на любое расстояние от источника зажигания.

Значения концентрационных пределов распространения пламени необходимо включать в стандарты или технические условия на газы, легковоспламеняющиеся индивидуальные жидкости и азеотропные смеси жидкостей, на твердые вещества, способные образовывать взрывоопасные пылевоздушные смеси (для пылей определяют только нижний концентрационный предел). Значения концентрационных пределов следует применять при определении категории помещений по взрывопожарной и пожарной опасности в соответствии с требованиями норм технологического проектирования; при расчете взрывобезопасных концентраций газов, паров и пылей внутри технологического оборудования и трубопроводов, при проектировании вентиляционных систем, а также при расчете предельно допустимых взрывобезопасных концентраций газов, паров и пылей в воздухе рабочей зоны с потенциальными источниками зажигания в соответствии с требованиями ГОСТ 12.1.010-76* "ССБТ. Взрывобезопасность. Общие требования", при разработке мероприятий по обеспечению пожарной безопасности объекта в соответствии с требованиями ГОСТ 12.1.004-91 "ССБТ. Пожарная безопасность. Общие требования". Допускается использовать экспериментальные и расчетные значения концентрационных пределов распространения пламени.

Сущность метода определения концентрационных пределов распространения пламени заключается в зажигании газо-, паро- или пылевоздушной смеси заданной концентрации исследуемого вещества в объеме реакционного сосуда и установлении факта наличия или отсутствия распространения пламени. Изменяя концентрацию горючего в смеси, устанавливают ее минимальное и максимальное значения, при которых происходит распространение пламени.

Температурные пределы распространения пламени (воспламенения).

Температурные пределы распространения пламени - такие температуры вещества, при которых его насыщенный пар образует в окислительной среде концентрации, равные соответственно нижнему (нижний температурный предел) и верхнему (верхний температурный предел) концентрационным пределам распространения пламени.

Значения температурных пределов распространения пламени следует применять при разработке мероприятий по обеспечению пожаровзрывобезопасности объекта в соответствии с требованиями ГОСТ 12.1.004-91 "ССБТ. Пожарная безопасность. Общие требования" и ГОСТ 12.1.010-76* "ССБТ. Взрывобезопасность. Общие требования"; при расчете пожаровзрывобезопасных температурных режимов работы технологического оборудования; при оценке аварийных ситуаций, связанных с разливом горючих жидкостей, для расчета концентрационных пределов распространения пламени, а также необходимо включать в стандарты или технические условия на горючие жидкости.

Сущность метода определения температурных пределов распространения пламени заключается в термостатировании исследуемой жидкости при заданной температуре в закрытом реакционном сосуде, содержащем воздух, испытании на зажигание паровоздушной смеси и установлении факта наличия или отсутствия распространения пламени. Изменяя температуру испытания, находят такие ее значения (минимальное и максимальное), при которых насыщенный пар образует с воздухом смесь, способную воспламеняться от источника зажигания и распространять пламя в объеме реакционного сосуда.

Температура тления.

Температура тления - температура вещества, при которой происходит резкое увеличение скорости экзотермических реакций окисления, заканчивающихся возникновением тления. Тление - беспламенное горение твердого вещества (материала) при сравнительно низких температурах (400-600 °С), часто сопровождающееся выделением дыма.

Значение температуры тления следует применять при экспертизах причин пожаров, выборе взрывозащищенного электрооборудования и разработке мероприятий по обеспечению пожарной безопасности технологических процессов, оценке пожарной опасности полимерных материалов и разработке рецептур материалов, не склонных к тлению.

Сущность метода определения температуры тления заключается в термостатировании исследуемого вещества (материала) в реакционном сосуде при обдуве воздухом и визуальной оценке результатов испытания. Изменяя температуру испытания, находят ее минимальное значение, при котором наблюдается тление вещества (материала).

Условия теплового самовозгорания.

Условия теплового самовозгорания - экспериментально выявленная зависимость между температурой окружающей среды, количеством вещества (материала) и временем до момента его самовозгорания. Самовозгорание - резкое увеличение скорости экзотермических процессов в веществе, приводящее к возникновению очага горения.

Результаты оценки условий теплового самовозгорания следует применять при выборе безопасных условий хранения и переработки самовозгорающихся веществ в соответствии с требованиями ГОСТ 12.1.004-91 "ССБТ. Пожарная безопасность. Общие требования".

Сущность метода определения условий теплового самовозгорания заключается в термостатировании исследуемого вещества (материала) при заданной температуре в закрытом реакционном сосуде и установлении зависимости между температурой, при которой происходит тепловое самовозгорание образца, его размерами и временем до возникновения горения (тления).

Минимальная энергия зажигания.

Минимальная энергия зажигания - наименьшая энергия электрического разряда, способная воспламенить наиболее легко воспламеняющуюся смесь горючего вещества с воздухом.

Значение минимальной энергии зажигания следует применять при разработке мероприятий по обеспечению пожаровзрывобезопасных условий переработки горючих веществ и обеспечения электростатической искробезопасности технологических процессов в соответствии с требованиями ГОСТ 12.1.004-91 "ССБТ. Пожарная безопасность. Общие требования", ГОСТ 12.1.010-76* "ССБТ. Взрывобезопасность. Общие требования" и ГОСТ 12.1.018-93 "ССБТ. Пожаровзрывобезопасность статического электричества. Общие требования".

Сущность метода определения минимальной энергии зажигания заключается в зажигании с заданной вероятностью газо-, паро- или пылевоздушной смеси различной концентрации электрическим разрядом различной энергии и выявлении минимального значения энергии зажигания после обработки экспериментальных данных.

Кислородный индекс.

Кислородный индекс - минимальное содержание кислорода в кислородно-азотной смеси, при котором возможно свечеобразное горение материала в условиях специальных испытаний.

Значение кислородного индекса следует применять при разработке полимерных композиций пониженной горючести и контроле горючести полимерных материалов, тканей, целлюлозно-бумажных изделий и других материалов. Кислородный индекс необходимо включать в стандарты или технические условия на твердые вещества (материалы).

Сущность метода определения кислородного индекса заключается в нахождении минимальной концентрации кислорода в потоке кислородно-азотной смеси, при которой наблюдается самостоятельное горение вертикально расположенного образца, зажигаемого сверху.

Способность взрываться и гореть при взаимодействии с водой, кислородом воздуха и другими веществами (взаимный контакт веществ).

Способность взрываться и гореть при взаимодействии с водой, кислородом воздуха и другими веществами - это качественный показатель, характеризующий особую пожарную опасность некоторых веществ.

Данные о способности веществ взрываться и гореть при взаимном контакте необходимо включать в стандарты или технические условия на вещества, а также следует применять при определении категории помещений по взрывопожарной и пожарной опасности в соответствии с требованиями норм технологического проектирования; при выборе безопасных условий проведения технологических процессов и условий совместного хранения и транспортирования веществ и материалов; при выборе или назначении средств пожаротушения.

Сущность метода определения способности взрываться и гореть при взаимном контакте веществ заключается в механическом смешивании исследуемых веществ в заданной пропорции и оценке результатов испытания.

Нормальная скорость распространения пламени.

Нормальная скорость распространения пламени - скорость перемещения фронта пламени относительно несгоревшего газа в направлении, перпендикулярном к его поверхности.

Значение нормальной скорости распространения пламени следует применять в расчетах скорости нарастания давления взрыва газо- и паровоздушных смесей в закрытом, негерметичном оборудовании и помещениях, критического (гасящего) диаметра при разработке и создании огнепреградителей, площади легкосбрасываемых конструкций, предохранительных мембран и других разгерметизирующих устройств; при разработке мероприятий по обеспечению пожаровзрывобезопасности технологических процессов в соответствии с требованиями ГОСТ 12.1.004-91 "ССБТ. Пожарная безопасность. Общие требования" и ГОСТ 12.1.010-76* "ССБТ. Взрывобезопасность. Общие требования".

Сущность метода определения нормальной скорости распространения пламени заключается в приготовлении горючей смеси известного состава внутри реакционного сосуда, зажигании смеси в центре точечным источником, регистрации изменения во времени давления в сосуде и обработке экспериментальной зависимости "давление-время" с использованием математической модели процесса горения газа в замкнутом сосуде и процедуры оптимизации. Математическая модель позволяет получить расчетную зависимость "давление-время", оптимизация которой по аналогичной экспериментальной зависимости дает в результате изменение нормальной скорости в процессе развития взрыва для конкретного испытания.

Скорость выгорания.

Скорость выгорания - количество жидкости, сгорающей в единицу времени с единицы площади. Скорость выгорания характеризует интенсивность горения жидкости.

Значение скорости выгорания следует применять при расчетных определениях продолжительности горения жидкости в резервуарах, интенсивности тепловыделения и температурного режима пожара, интенсивности подачи огнетушащих веществ.

Сущность метода определения скорости выгорания заключается в зажигании образца жидкости в реакционном сосуде, фиксировании потери массы образца за определенный промежуток времени и математической обработке экспериментальных данных.

Минимальная флегматизирующая концентрация флегматизатора.

Минимальная флегматизирующая концентрация флегматизатора - наименьшая концентрация флегматизатора в смеси с горючим и окислителем, при которой смесь становится неспособной к распространению пламени при любом соотношении горючего и окислителя.

Значение минимальной флегматизирующей концентрации флегматизатора следует применять при разработке мероприятий по обеспечению пожаровзрывобезопасности технологических процессов методом флегматизации в соответствии с требованиями ГОСТ 12.1.004-91 "ССБТ. Пожарная безопасность. Общие требования" и ГОСТ 12.1.010-76* "ССБТ. Взрывобезопасность. Общие требования".

Сущность метода определения минимальной флегматизирующей концентрации флегматизатора заключается в определении концентрационных пределов распространения пламени горючего вещества при разбавлении газо-, паро- и пылевоздушной смеси данным флегматизатором и получении "кривой флегматизации". Пик "кривой флегматизации" соответствует значению минимальной флегматизирующей концентрации флегматизатора.

Минимальное взрывоопасное содержание кислорода.

Минимальное взрывоопасное содержание кислорода - такая концентрация кислорода в горючей смеси, состоящей из горючего вещества, воздуха и флегматизатора, меньше которой распространение пламени в смеси становится невозможным при любой концентрации горючего в смеси, разбавленной данным флегматизатором.

Значение минимального взрывоопасного содержания кислорода следует применять при разработке мероприятий по обеспечению пожаровзрывобезопасности технологических процессов в соответствии с требованиями ГОСТ 12.1.004-91 "ССБТ. Пожарная безопасность. Общие требования" и ГОСТ 12.1.010-76* "ССБТ. Взрывобезопасность. Общие требования".

Сущность метода определения минимального взрывоопасного содержания кислорода заключается в испытании на воспламенение газо-, паро- или пылевоздушных смесей различного состава, разбавленных данным флегматизатором, до выявления минимальной концентрации кислорода и максимальной концентрации флегматизатора, при которых еще возможно распространение пламени по смеси.

Максимальное давление взрыва.

Максимальное давление взрыва - наибольшее избыточное давление, возникающее при дефлаграционном сгорании газо-, паро- или пылевоздушной смеси в замкнутом сосуде при начальном давлении смеси 101,3 кПа.

Значение максимального давления взрыва следует применять при определении категории помещений по взрывопожарной и пожарной опасности в соответствии с требованиями норм технологического проектирования, при разработке мероприятий по обеспечению пожаровзрывобезопасности технологических процессов в соответствии с требованиями ГОСТ 12.1.004-91 "ССБТ. Пожарная безопасность. Общие требования" и ГОСТ 12.1.010-76* "ССБТ. Взрывобезопасность. Общие требования".

Сущность метода определения максимального давления взрыва заключается в зажигании газо-, паро- и пылевоздушной смеси заданного состава в объеме реакционного сосуда и регистрации избыточного развивающегося при воспламенении горючей смеси давления. Изменяя концентрацию горючего в смеси, выявляют максимальное значение давления взрыва.

Скорость нарастания давления взрыва.

Скорость нарастания давления взрыва - производная давления взрыва по времени на восходящем участке зависимости давления взрыва горючей смеси в замкнутом сосуде от времени.

Значение скорости нарастания давления взрыва следует применять при разработке мероприятий по обеспечению пожаровзрывобезопасности технологических процессов в соответствии с требованиями ГОСТ 12.1.004-91 "ССБТ. Пожарная безопасность. Общие требования" и ГОСТ 12.1.010-76* "ССБТ. Взрывобезопасность. Общие требования".

Сущность метода определения скорости нарастания давления заключается в экспериментальном определении максимального давления взрыва горючей смеси в замкнутом сосуде, построении графика изменения давления взрыва во времени и расчете средней и максимальной скорости по известным формулам.

Концентрационный предел диффузионного горения газовых смесей в воздухе.

Концентрационный предел диффузионного горения газовых смесей в воздухе (ПДГ) - предельная концентрация горючего газа в смеси с разбавителем, при которой данная газовая смесь при истечении в атмосферу не способна к диффузионному горению.

Концентрационный предел диффузионного горения газовых смесей в воздухе следует учитывать при разработке мероприятий по обеспечению пожаровзрывобезопасности технологических процессов в соответствии с требованиями ГОСТ 12.1.004-91 "ССБТ. Пожарная безопасность. Общие требования" и ГОСТ 12.1.010-76* "ССБТ. Взрывобезопасность. Общие требования".

Сущность метода определения концентрационного предела диффузионного горения газовых смесей в воздухе заключается в определении предельной концентрации горючего газа в смеси с разбавителем, при которой данная газовая смесь не способна к диффузионному горению. При этом фиксируется предельная скорость подачи газовой смеси.

Метод определения концентрационного предела диффузионного горения газовых смесей в воздухе применим для смесей с температурой 20-300 °С.

Пожаровзрывоопасность веществ и материалов - это совокупность свойств, которые характеризуют их склонность к возникновению и распространению горения, особенности горения и способность поддаваться гашению загораний.

По этим показателям выделяют три группы горючести материалов и веществ : негорючие, трудногорючие и горючие .

Негорючие - вещества и материалы, которые неспособны к горению или обугливанию в воздухе под воздействием огня или высокой температуры.

Это материалы минерального происхождения и изготовленные на их основе материалы, - красный кирпич, силикатный кирпич, бетон, камень, асбест, минеральная вата, асбестовый цемент и другие материалы, а также большинство металлов. При этом негорючие вещества могут быть пожарноопасными, например, вещества, которые выделяют горючие продукты при взаимодействии с водой.

Трудногорючие - вещества и материалы, которые способны загораться, тлеть или обугливать в воздухе от источника зажигания, но не способные самостоятельно гореть или обугливать после его удаления (материалы, которые содержат горючие и негорючие компоненты, например, древесина при глубокой пропитке антипиреном, фибролит и т.п.);

Горючие - вещества и материалы, которые способны самовозгораться, а также загораться, тлеть или обугливать от источника зажигания и самостоятельно гореть после его удаления.

В свою очередь, в группе горючих веществ и материалов выделяют легковоспламеняющиеся вещества и материалы - это вещества и материалы, которые способны заниматься от кратковременного (до 30 с) действия источника зажигания низкой энергии.

С точки зрения пожарной безопасности решающее значение имеют показатели пожаровзрывоопасных свойств горючих веществ и материалов . ГОСТ 12.1.044189 предусматривает свыше 20 таких показателей . Необходимый и достаточный для оценки пожаровзрывоопасности конкретного объекта перечень этих показателей зависит от агрегатного состояния вещества, вида горения (гомогенное или гетерогенное) и тому подобное и определяется специалистами.

В таблице 4.1 приведенные даны основных показателей пожарноопасных свойств веществ разного агрегатного состояния, которые используются при определении категорий взрывоопасности помещений и взрывоопасных и пожарноопасных зон в помещениях и вне их.

t всп - температура вспышки - это в условиях специальных испытаний над ее поверхностью образуется пары или газы , которые способны загораться от источника зажигания , но скорость их образования еще не достаточна для стойкого горения , то есть имеет место только вспышка - быстрое сгорание горючей смеси, которая не сопровождается образованием сжатых газов.

Значение температуры вспышки используется для характеристики пожарной опасности жидкостей.

t воспл - температура воспламенения - это наименьшая температура вещества, при которой в условиях специальных испытаний вещество выделяет горючие пары или газы с такой скоростью, что после их зажигания от внешнего источника наблюдается вспыхивание - начало стойкого горения пламени.

Таблица 4.1

Основные показатели, которые характеризуют пожарноопасные свойства веществ разного агрегатного и дисперсного состояния ♦

Агрегатный (дисперсный) состояние вещества Основные показатели пожежонебезпеки
t всп t воспл t своспл НКМПП ВКМПП t нкмпп t вкмпп
Твердое вещество - + + - - - -
Жидкости + + + + + + +
Газы - - + + + - -
Пыль - + + + - - -

Температура вспышки и воспламенения легко воспламеняющихся жидкостей (ЛВЖ) отличается на 5-15 о С . Чем ниже температура вспышки жидкости, тем меньшей является эта разница , и, соответственно, более пожарноопасной эта жидкость. Температура воспламенения используется при определении группы горючести веществ, при оценке пожарной опасности оборудования и технологических процессов, связанных с переработкой горючих веществ, при разработке мероприятий по обеспечению пожарной безопасности.

t своспл - температура самовоспламенения - это наименьшая температура вещества, при которой в условиях специальных испытаний происходят резкое увеличение скорости экзотермических объемных реакций , которая приводит к возникновению горения пламени или взрыву при отсутствии внешнего источника пламени.

Температура самовоспламенения вещества зависит от ряда факторов и изменяется в широких пределах. Наиболее значительной является зависимость температуры самовоспламенения от объема и геометрической формы горючей смеси.С увеличением объема горючей смеси при неизменной ее форме температура самовоспламенения уменьшается , потому что уменьшается площадь теплоотдачи на единицу объема вещества и создаются более благоприятные условия для накопления тепла в горючей смеси. При уменьшении объема горючей смеси температура ее самовоспламенения повышается.

Для каждой горючей смеси существует критический объем, в котором самовоспламенение не происходит в силу того, что площадь теплоотдачи, которая приходится на единицу объема горючей смеси, настолько большая, что скорость теплообразования за счет реакции окисления даже при очень высоких температурах не может превысить скорость теплоотвода . Это свойство горючих смесей используется при создании препятствий для распространения пламени. Значение температуры самовоспламенения используется для выбора типа взрывозащищенного электрооборудования , при разработке мероприятий по обеспечению пожаровзрывоопасности технологических процессов, а также при разработке стандартов или технических условий на вещества и материалы.

Температура самовоспламенения горючей смеси значительно (на сотни градусов) превышает температуру вспышки и температуру воспламенения.

НКПРП и ВКПРП - соответственно, нижние и верхние концентрационные пределы распространения пламени - это минимальная и максимальная объемная (массовая) доля горючего вещества в смеси с данным окислителем , при которых возможно воспламенение ( самовоспламенение) смеси от источника зажигания с последующим распространением пламени по смеси на любое расстояние от источника зажигания.

Смеси, которые содержат горючее вещество ниже, чем НКПРП или выше, чем ВКПРП, гореть не могут: в первом случае при недостаточном количестве горючего вещества, а во втором - окислителя. Наличие областей негорючих концентраций веществ и материалов предоставляет возможность выбрать такие условия их хранения, транспортировки и использования, при которых исключается возможность возникновения пожара или взрыва. С другой стороны следует отметить, что пары и газы с НКПРП до 10% по объему в воздухе, а также горючие пылевидные вещества, особенно в зависшем состоянии при значении НКПРП менее 65 г/м 3 являются чрезвычайно взрывоопасными.

КПРП включаются в стандарты, технических условий на газы, легковоспламеняющиеся жидкости и твердые вещества, способные образовывать взрывоопасные газо-, паро- и пылевоздушные смеси, при этом для пыли устанавливается только НКПРП, потому что большие концентрации взвешенной пыли практически не могут быть достигнуты в открытом пространстве, а при любых концентрациях пыли сгорает только и ее часть, которая обеспечена окислителем. Значения концентрационных пределов применяются при определении категории помещения и класса зон по взрывопожарной и пожарной опасности, при расчете предельно-допустимих взрывобезопасных концентраций газов, паров и пыли в воздухе рабочей зоны с потенциальным источником зажигания, при разработке мероприятий по обеспечению пожарной безопасности.

t НКПРП и t ВКПРП - соответственно, нижние и верхние температурные пределы распространения пламени (КПРП) - температуры материала (вещества), при которых его(ее) насыщенные пары или горючие летучие образуют в окислительной среде концентрации, которые равняются нижний или верхний концентрационным пределам распространения пламени.

Значения КПРП используются во время разработки мероприятий по обеспечению пожаровзрывобезопасности объектов, при расчете пожаровзрывобезопасних режимов работы технологического оборудования, при оценке аварийных ситуаций, связанных с разливом горючих жидкостей, для расчета КПРП и тому подобное.

Безопасной , с точки зрения вероятности самовоспламенения газовоздушной смеси, принято считать температуру на 10 о С меньше нижней или на 15 о С выше верхнего температурного предела распространения пламени для данного вещества.

Наличие разного набора показателей пожарноопасных свойств веществ разного агрегатного состояния (см. табл. 4.1) связана с особенностями их горения.

Твердые горючие вещества в большинстве случаев сами по себя в твердом состоянии не горят, а горят горючие летучие продукты их распада под действием высоких температур в смеси с воздухом - пламенное горение . Таким образом, горение твердых веществ в большинстве случаев связано с переходом их горючей составляющей в другое агрегатное состояние - газовый. И только твердые горючие вещества с высоким содержанием горючих составляющих (антрацит, графит и т.п.) могут гореть в твердом агрегатном состоянии практически беспламенно. Поэтому твердые горючие вещества , в целом более инертные относительно возможного загорания , а большинство приведенных в табл. 4.1 показателей пожарноопасных свойств для твердых веществ, за исключением t воспл и t своспл , не имеют существенного значения.

Для твердых веществ, в целом, величины t воспл и t своспл колеблятся в пределах (2…6) 10 2о С.

Воспламеняющиеся жидкости. Характерным для процесса горения этих жидкостей является то что сами жидкости не горят, а горит их пар в смеси с воздухом . Если над поверхностью горючей жидкости концентрация пара будет меньше НКПРП, то зажечь такую жидкость от внешнего источника зажигания невозможно, не доведя температуру жидкости до значения, больше за tНКПРП. Таким образом, горение жидкостей связано с переходом их из одного агрегатного состояния (жидкости) в другой (в пар) . В связи с этим для оценки взрывопожароопасных свойств горючих жидкостей имеют значение все показатели, приведенные в табл. 4.1.

Среди приведенных показателей особенное значение имеет t всп, при которой горючие жидкости разделяются на 5 классов:

1. t всп < -13 о С;

2. t всп = - 13..28 о С;

3. t всп = 29..61 о С;

4. t всп = 66..120 о С;

5. t всп < 120 о С.

Первые 3 класса жидкостей условно относятся к легковоспламеняющимся(ЛВЖ) . Характерной особенностью для ЛВЖ является то, что большинство из них даже при обычных температурах в производственных помещениях могут образовывать паровоздушные смеси с концентрациями в пределах распространения пламени, то есть взрывоопасные паровоздушные смеси.

4-й и 5-й классы жидкостей по t всп относятся к горючим (ГЖ). Паровоздушные смеси с концентрациями в пределах распространения пламени для ГЖ могут иметь место при температурах, не характерных для производственных помещений, - при температурах, которые превышают соответствующие t всп этих жидкостей.Такие температуры возможны в технологических процессах, связанных с нагревом ГЖ к температурам, больших t всп и при таких условиях ГЖ тоже

Горючие газы горят в смеси образуют взрывоопасные паровоздушные смеси с воздухом в концентрациях в пределах НКПРП - ВКПРП , и такие смеси газы создают без агрегатных переходов веществ. Поэтому горючие газы имеют большую готовность к горению, чем твердые горючие вещества и воспламеняющиеся жидкости, следовательно являются более опасными с точки зрения взрывопожарной опасности, а соответствующие их свойства характеризуются только тремя показателями - t своспл, НКПРП и ВКПРП (см. табл. 4.1).

Пылевоздушные смеси - смеси с воздухом измельченных к размерам до 850 мкм частей твердых горючих веществ . Процесс горения пыли, в целом, подобный процессу горения твердых веществ. Но наличие большой удельной поверхности пылинок (отношение площади поверхности к их массе), которая контактирует с окислителем (воздухом), и способность к быстрому их прогреву по всей массе под действием источника зажигания, делают пыль опаснее