Эмбриология изучает все процессы, происходящие при зарождении живого организма – гаметогенез, оплодотворение, образование и дробление зиготы, процесс формирования тканей организма, закладку и развитие органов, систем и частей тела.

Эмбриология и ЭКО

Эмбриология получила широкое применение в экстракорпоральном оплодотворении. С помощью эмбриологии происходит изучение качества сперматозоидов и яйцеклетки. На этапе подготовки к ЭКО сперматозоиды осматриваются врачом эмбриологом. Отбираются наиболее подвижные и имеющие нормальное морфологическое строение.

Такое же обследование перед оплодотворением проходит яйцеклетка. С помощью эмбриологии происходит искусственное оплодотворение яйцеклетки сперматозоидом. Сложный процесс оплодотворения находится под контролем эмбриолога.

Сперматозоид проникает в яйцеклетку, или его искусственно вводят в яйцеклетку. Искусственное введение сперматозоида в яйцеклетку происходит при плохом качестве спермальной жидкости, небольшом количестве морфологически нормальных и подвижных сперматозоидов. В этом случае происходит удаление хвостика сперматозоида специальным инструментом, под микроскопом, и сперматозоид вводится непосредственно в яйцеклетку. Этот метод оплодотворения называется ИКСИ. Процесс оплодотворения считается законченным, когда сливаются два гаплоидных ядра (яйцеклетки и сперматозоида) и начинается подготовка к дроблению оплодотворенного яйца. Если началось дробление клеток – это означает, что активизировалась оплодотворенная яйцеклетка, началось развитие организма. При дроблении образуются новые клетки, которые называются бластомерами. При увеличении числа бластомеров образуется морула. При дальнейшем делении бластомеры становятся все меньше размерами, количество клеток растет, они плотно прилегают одна к другой и приобретают вид замкнутой полости. Такая форма делает более жесткой структуру клеток и уплотняет клеточный слой. Формируется бластула. На формирование бластулы уходит около ста часов. Закладывается следующий этап развития человеческого организма. Происходит развитие зародыша (гаструляция), закладка органов и тканей. Начинается процесс объединения в единое целое развивающегося организма. Развивается нервная система, органы чувств, пищеварительный тракт, различные железы, хрящевая и костные ткани, сосудистая система, образуется кровь. В возрасте восьми недель зародыш становиться похожим на человека, приобретает внешние морфологические признаки. В восемь недель заканчивается закладка органов человеческого зародыша.

Врач эмбриолог

К врачу эмбриологу обращаются, когда в течение определенного времени попытки зачать ребенка не увенчались успехом. Семейной паре рекомендуется пройти обследование на мужское и женское бесплодие. К врачу эмбриологу обращаются женщины после операции на фаллопиевых трубах, яичниках.

Врач эмбриолог в клиниках, лечащих бесплодие – это специалист, который изучает качество половых клеток. Работает эмбриолог на высокоточном, специальном оборудовании, не ведет прием пациентов, но от его работы зависит очень многое. Эмбриолог изучает половые клетки мужчины и женщины, выбирает самые здоровые. Профессионализм эмбриолога позволяет добиться результата, даже если яйцеклетка и сперматозоид - не лучшего качества. От мастерства врача зависит итог протокола ЭКО – произойдет оплодотворение яйцеклетки или нет.

После того, как проведена пункция, врач эмбриолог определяет, каким методом следует воспользоваться для оплодотворения яйцеклетки. При низких результатах спермограммы – рекомендуется метод ИКСИ. При уверенности врачей в оплодотворении без ИКСИ рекомендуется ЭКО.

Очень много труда эмбриолога требуется при плохом качестве материала (сперматозоидов и яйцеклетки). После оплодотворения врач наблюдает за дальнейшим развитием организма и формированием клеток. Если деление клеток идет в соответствии со сроками, то через несколько дней формируется морула, а затем бластоциста. Бластоциста имеет больше шансов на приживление в полости матки, однако по многим причинам часто приходится подсаживать морулы (клетки на третий день развития). Эмбриолог работает с пациентами от момента забора материала до подсадки оплодотворенной яйцеклетки в полость матки. Он владеет методом криоконсервации эмбрионов, что позволяет повторить протокол ЭКО через время, если первый протокол был неудачным.

Эмбриология изучает особенности развития зародыша от момента зачатия до появления на свет ребенка. Процесс эмбриогенеза , являющийся основным предметом исследований науки, можно разделить на несколько стадий:

  • образование зиготы, происходящее в момент оплодотворения яйцеклетки сперматозоидом;
  • образование бластулы вследствие активного дробления клеток;
  • гаструляция, подразумевающая под собой появление основных зародышевых листков и органов;
  • гистогенез и органогенез органов и тканей плода, плаценты;
  • системогенез, означающий формирование всех основных систем организма ребенка.

Кроме того, благодаря эмбриологии стали известны наиболее опасные периоды внутриутробного развития, способные негативно повлиять на плод под воздействием определенных факторов. Так, критическими считаются следующие моменты онтогенеза:

  • само оплодотворение;
  • внедрение эмбриона в стенку матки, происходящее на 7-е сутки;
  • формирование зачатков основных тканей, длящееся с 3 по 8 неделю;
  • образование головного мозга, происходящее с 15 по 20 неделю;
  • развитие всех органов и систем плода (с 20 по 24 неделю);
  • рождение.

В эти периоды влияние различных внутренних и внешних процессов может привести к замедленному, неправильному развитию или даже смерти ребенка. Поэтому на данных сроках беременности стоит уделить особое внимание здоровью женщины и плода.


Клиническая эмбриология изучает проблемы и отклонения от нормы в онтогенезе, ищет способы их решения и помогает избежать каких-либо нарушений. Кроме того, эта наука ищет вероятные причины различных патологий развития (в том числе возникновения уродств), факторы, действующие на течение эмбриогенеза, а также способы влияния на него на всех возможных этапах. Также к предметам изучения можно отнести бесполое размножение, регенерацию и патологическое развитие тканей и органов. Существуют школы, исследующие проблемы онкологических новообразований, их закономерности и причины возникновения.

История эмбриологии

Еще в древние времена ученых интересовали загадки возникновения и развития ребенка в утробе матери. Гиппократ и Аристотель были основоположниками самых известных теорий эмбриогенеза, соперничавших друг с другом почти до 19 века: перформизма и эпигенеза.


Представители идеи перформизма считали, что новый организм присутствует в «яйце» уже в готовом состоянии, лишь очень уменьшенный в размере, и со временем он только увеличивается в размерах. Однако теоретики не знали точно, в материнском теле или отцовском содержатся эмбрионы и каким образом им передаются свойства второго родителя.


Одним из приверженцев перформизма был математик Г. Лейбниц, выдвинувший предположение, что если в яйцеклетке есть эмбрионы, то в его яичниках должны быть сами яйцеклетки со следующим поколением зародышей и так далее. Другим примером схожих взглядов можно назвать теорию Сваммердама, утверждающую, что в яйце бабочки находится гусеница, в самой гусенице – куколка, а в ней – бабочка.


Ученые, придерживающиеся эпигенеза, ярким представителем которого являлся У. Гарвей, считали, что в «яйце» содержится бесструктурное вещество, хранящее потенциал для образования будущих органов и тканей. В 18 веке К. Ф. Вольфом в ходе исследований куриных зародышей сделал открытие первичных пластов, которые затем формируют органы. В начале 19 века это наблюдение было подтверждено и стало общепринятым мнением среди ученых.


В это же время большое открытие было сделано К. Бэром. Изучая зародыши позвоночных, он пришел к выводу, что все они на самых ранних этапах развития схожи между собой. Причем с течением времени у них появляется все больше различий. То есть эмбриогенез происходит от общего к частному, вначале формируя признаки типа, затем класса и так далее. Таким образом, возникло понятие о филогенезе, или повторении процессов эволюции за время онтогенеза человека. Позднее на основании этой теории был сформирован биогенетический закон, описывающийся в трудах Ч. Дарвина.


Также получило известность учение о рекапитуляции – повторении высшими организмами этапов развития более низших. Кроме того, большой вклад в развитие эмбриологии внесли А. Ковалевский, И. Мечников, доказавшие, что эмбриогенез всех млекопитающих проходит через образование трех зародышевых листков. Кроме того, неоценимы заслуги П. Светлова, являющегося основоположником теории о критических моментах эмбриогенеза.


Экспериментальная эмбриология, как наука, стала развиваться благодаря В. Ру, который путем изоляции бластомеров выявил некоторые закономерности в эмбриогенезе и патологии при действии определенных факторов. В 20 веке появилось новое направление в науке – микрохирургия на зародышах. Вследствие этого были придуманы новые методики: снятие оболочек с яйца, пересадка частей зародыша и приготовление питательной среды для развития эмбриона.

Эмбриология в наше время

Наука, изучающая эмбриогенез, в настоящее время достигла больших результатов. Различают несколько направлений эмбриологии:

  • общая эмбриология;
  • сравнительная;
  • экологическая;
  • экспериментальная;
  • онтогенетическая.

Все они тесно связаны с цитологией, гистологией, медициной, биохимией, биологией, генетикой и физиологией.


Есть несколько методов изучения эмбриогенеза и зародышей как таковых. К ним относятся:

  • исследование фиксированных срезов при помощи различных методик (световой микроскопии, иммуноцитохимии и других);
  • метод маркирования клеток эмбриона, позволяющий следить за их изменениями;
  • эксплантация, суть которой заключается в переносе отдельной части зародыша на питательную среду для выращивания и изучения;
  • трансплантация ядра, с помощью которой стало возможным осуществить клонирование.

Благодаря успехам и исследованиям в эмбриологии стало возможным не только следить за этапами развития плода, но и управлять ими, предотвращать появление пороков и уродств. Кроме того, женщины, в анамнезе которых отмечаются постоянные выкидыши или бесплодие, получили шанс стать матерями.


Методы искусственного оплодотворения и суррогатного материнства получили свое существование только с помощью достижений и методик эмбриологии. Теперь образование эмбриона, его рост можно осуществлять в искусственных условиях, на специально подготовленной питательной среде. Кроме того, исследуя зародыши, эмбриологи могут совершить отбор более жизнеспособных зародышей от патологических и слабых, и тем самым не допустить случаев замершей беременности или рождения ребенка с пороками развития.


В клиниках ЭКО, научно-исследовательских институтах есть специалисты, занимающиеся проблемами оплодотворения и внутриутробного развития. Стоит отметить, что эта область медицины достигла значительных высот и продолжает развиваться, открывая новые горизонты и возможности для людей. Ее роль в современном мире становится все более значительной.

ЭМБРИОЛОГИЯ
наука, изучающая развитие организма на самых ранних стадиях, предшествующих метаморфозу, вылуплению или рождению. Слияние гамет - яйца (яйцеклетки) и сперматозоида - с образованием зиготы дает начало новой особи, но прежде чем стать таким же существом, как родители, ей предстоит пройти определенные стадии развития: клеточное деление, образование первичных зародышевых листков и полостей, возникновение осей зародыша и осей симметрии, развитие целомических полостей и их производных, образование внезародышевых оболочек и, наконец, появление систем органов, функционально интегрированных и образующих тот или иной узнаваемый организм. Все это составляет предмет изучения эмбриологии. Развитию предшествует гаметогенез, т.е. образование и созревание сперматозоида и яйца. Процесс развития всех яиц данного вида протекает в общем одинаково.
Гаметогенез. Зрелые сперматозоид и яйцо различаются по своему строению, сходны у них только ядра; однако обе гаметы образуются из одинаковых на вид первичных половых клеток. У всех организмов, размножающихся половым путем, эти первичные половые клетки обособляются на ранних стадиях развития от других клеток и развиваются особым образом, готовясь к выполнению своей функции - продуцированию половых, или зародышевых, клеток. Поэтому их называют зародышевой плазмой - в отличие от всех других клеток, составляющих соматоплазму. Совершенно очевидно, однако, что и зародышевая плазма и соматоплазма происходят из оплодотворенного яйца - зиготы, давшей начало новому организму. Таким образом, в своей основе они одинаковы. Факторы, определяющие, какие клетки станут половыми, а какие - соматическими, до сих пор не установлены. Однако в конечном итоге половые клетки приобретают достаточно четкие отличия. Эти отличия возникают в процессе гаметогенеза. У всех позвоночных и некоторых беспозвоночных первичные половые клетки возникают вдали от гонад и мигрируют к гонадам зародыша - яичнику или семеннику - с током крови, с пластами развивающихся тканей или посредством амебоидных движений. В гонадах из них образуются зрелые половые клетки. Ко времени развития гонад сома и зародышевая плазма функционально уже обособлены одна от другой, и, начиная с этого времени, на протяжении всей жизни организма половые клетки совершенно независимы от каких бы то ни было воздействий сомы. Именно поэтому признаки, приобретенные индивидом на протяжении его жизни, не оказывают влияния на его половые клетки. Первичные половые клетки, находясь в гонадах, делятся с образованием мелких клеток - сперматогониев в семенниках и оогониев в яичниках. Сперматогонии и оогонии продолжают многократно делиться, образуя клетки таких же размеров, что свидетельствует о компенсаторном росте как цитоплазмы, так и ядра. Сперматогонии и оогонии делятся митотически, и, следовательно, у них сохраняется первоначальное диплоидное число хромосом. Спустя некоторое время эти клетки прекращают делиться и вступают в период роста, в течение которого в их ядрах происходят очень важные изменения. Хромосомы, полученные исходно от двух родителей, соединяются попарно (конъюгируют), вступая в очень тесное соприкосновение. Это делает возможным последующий кроссинговер (перекрест), в ходе которого гомологичные хромосомы разрываются и соединяются в новом порядке, обмениваясь эквивалентными участками; в результате кроссинговера в хромосомах оогониев и сперматогониев возникают новые комбинации генов. Предполагается, что стерильность мулов обусловлена несовместимостью хромосом, полученных от родителей - лошади и осла, из-за которой хромосомы не способны выжить при тесном соединении друг с другом. В результате созревание половых клеток в яичниках или семенниках мула прекращается на стадии конъюгации. Когда ядро перестроилось и в клетке накопилось достаточное количество цитоплазмы, возобновляется процесс деления; вся клетка и ядро подвергаются двум разного типа делениям, определяющим собственно процесс созревания половых клеток. Одно из них - митоз - приводит к образованию клеток, аналогичных исходной; в результате другого - мейоза, или редукционного деления, в ходе которого клетки делятся дважды, - образуются клетки, каждая из которых содержит лишь половинное (гаплоидное) число хромосом по сравнению с исходным, а именно по одной из каждой пары (см. также КЛЕТКА). У некоторых видов эти клеточные деления происходят в обратном порядке. После роста и реорганизации ядер в оогониях и сперматогониях и непосредственно перед первым делением мейоза эти клетки получают названия ооцитов и сперматоцитов первого порядка, а после первого деления мейоза - ооцитов и сперматоцитов второго порядка. Наконец, после второго деления мейоза клетки, находящиеся в яичнике, называют яйцами (яйцеклетками), а находящиеся в семеннике - сперматидами. Теперь яйцо окончательно созрело, а сперматиде предстоит еще проделать метаморфоз и превратиться в сперматозоид. Здесь необходимо подчеркнуть одно важное различие между оогенезом и сперматогенезом. Из одного ооцита первого порядка в результате созревания получается только одно зрелое яйцо; остальные три ядра и небольшое количество цитоплазмы превращаются в полярные тельца, которые не функционируют как половые клетки и в дальнейшем дегенерируют. Вся цитоплазма и желток, которые могли бы распределиться по четырем клеткам, концентрируются в одной - в зрелом яйце. В отличие от этого один сперматоцит первого порядка дает начало четырем сперматидам и такому же числу зрелых сперматозоидов, не теряя ни одного ядра. При оплодотворении восстанавливается диплоидное, или нормальное, число хромосом.



Яйцо. Яйцеклетка инертна и обычно крупнее соматических клеток данного организма. Яйцеклетка мыши составляет примерно 0,06 мм в диаметре, тогда как диаметр страусиного яйца бывает более 15 см. Яйца обычно имеют шаровидную или овальную форму, но бывают также продолговатыми, как у насекомых, миксины или ильной рыбы. Размеры и другие признаки яйца зависят от количества и распределения в нем питательного желтка, накапливающегося в виде гранул или, реже, в виде сплошной массы. Поэтому яйца делят на разные типы в зависимости от содержания в них желтка. Гомолецитальные яйца (от греч. homs - равный, однородный, lkithos - желток). В гомолецитальных яйцах, называемых также изолецитальными или олиголецитальными, желтка очень мало и он равномерно распределен в цитоплазме. Такие яйца типичны для губок, кишечнополостных, иглокожих, морских гребешков, нематод, оболочников и большинства млекопитающих. Телолецитальные яйца (от греч. tlos - конец) содержат значительное количество желтка, а цитоплазма сконцентрирована у них на одном конце, обозначаемом обычно как анимальный полюс. Противоположный полюс, на котором сконцентрирован желток, называют вегетативным. Такие яйца типичны для кольчатых червей, головоногих моллюсков, бесчерепных (ланцетник), рыб, земноводных, пресмыкающихся, птиц и однопроходных млекопитающих. У них хорошо выражена анимально-вегетативная ось, определяемая градиентом распределения желтка; ядро обычно располагается эксцентрически; в яйцах, содержащих пигмент, он также распределяется по градиенту, но, в отличие от желтка, его больше на анимальном полюсе.
Центролецитальные яйца. В них желток расположен в центре, так что цитоплазма сдвинута к периферии и дробление поверхностное. Такие яйца типичны для некоторых кишечнополостных и членистоногих.
Сперматозоид. В отличие от крупной и инертной яйцеклетки, сперматозоиды мелкие, от 0,02 до 2,0 мм в длину, они активны и способны проплыть большое расстояние, чтобы добраться до яйца. Цитоплазмы в них мало, а желтка нет вообще. Форма сперматозоидов разнообразна, однако среди них можно выделить два главных типа - жгутиковые и безжгутиковые. Безжгутиковые формы сравнительно редки. У большинства животных активная роль в оплодотворении принадлежит сперматозоиду. См. также СПЕРМАТОЗОИД .
Оплодотворение. Оплодотворение - сложный процесс, в ходе которого сперматозоид проникает в яйцо и их ядра сливаются. В результате слияния гамет образуется зигота - по существу уже новая особь, способная развиваться при наличии необходимых для этого условий. Оплодотворение вызывает активацию яйца, стимулируя его к последовательным изменениям, приводящим к развитию сформированного организма. При оплодотворении происходит также амфимиксис, т.е. смешение наследственных факторов в результате слияния ядер яйца и сперматозоида. Яйцо обеспечивает половину необходимых хромосом и обычно все питательные вещества, необходимые для ранних стадий развития. При соприкосновении сперматозоида с поверхностью яйца желточная оболочка яйца изменяется, превращаясь в оболочку оплодотворения. Это изменение считается доказательством того, что произошла активация яйца. Одновременно на поверхности яиц, содержащих мало желтка или не содержащих его вовсе, возникает т.н. кортикальная реакция, не допускающая проникновения в яйцо других сперматозоидов. У яиц, содержащих очень много желтка, кортикальная реакция возникает позднее, так что в них обычно проникает несколько сперматозоидов. Но даже в таких случаях оплодотворение совершает только один сперматозоид, первым дошедший до ядра яйца. У некоторых яиц в месте соприкосновения сперматозоида с плазматической мембраной яйца образуется выпячивание мембраны - т.н. бугорок оплодотворения; он облегчает проникновение сперматозоида. Обычно в яйцо проникают головка сперматозоида и центриоли, находящиеся в его средней части, а хвост остается снаружи. Центриоли способствуют образованию веретена при первом делении оплодотворенного яйца. Процесс оплодотворения можно считать завершенным, когда два гаплоидных ядра - яйцеклетки и сперматозоида - сливаются и их хромосомы конъюгируют, готовясь к первому дроблению оплодотворенного яйца.
См. также ЯЙЦО .
Дробление. Если возникновение оболочки оплодотворения считается показателем активации яйца, то деление (дробление) служит первым признаком действительной активности оплодотворенного яйца. Характер дробления зависит от количества и распределения желтка в яйце, а также от наследственных свойств ядра зиготы и особенностей цитоплазмы яйца (последние целиком определяются генотипом материнского организма). Выделяют три типа дробления оплодотворенного яйца. Голобластическое дробление характерно для гомолецитальных яиц. Плоскости дробления разделяют яйцо полностью. Они могут делить его на равные части, как у морской звезды или морского ежа, или же на неравные части, как у брюхоногого моллюска Crepidula. Дробление умеренно телолецитального яйца ланцетника происходит по голобластическому типу, однако неравномерность деления проявляется только после стадии четырех бластомеров. У некоторых клеток после этой стадии дробление становится крайне неравномерным; образующиеся при этом мелкие клетки называют микромерами, а крупные клетки, содержащие желток, - макромерами. У моллюсков плоскости дробления проходят таким образом, что начиная со стадии восьми клеток бластомеры располагаются по спирали; этот процесс регулируется ядром. Меробластическое дробление типично для телолецитальных яиц, богатых желтком; оно ограничено относительно небольшим участком у анимального полюса. Плоскости дробления не проходят через все яйцо и не захватывают желток, так что в результате деления на анимальном полюсе образуется небольшой диск клеток (бластодиск). Такое дробление, называемое также дискоидальным, свойственно пресмыкающимся и птицам. Поверхностное дробление типично для центролецитальных яиц. Ядро зиготы делится в центральном островке цитоплазмы, и получающиеся при этом клетки перемещаются на поверхность яйца, образуя поверхностный слой клеток вокруг лежащего в центре желтка. Этот тип дробления наблюдается у членистоногих.
Правила дробления. Установлено, что дробление подчиняется определенным правилам, названным именами исследователей, которые их впервые сформулировали. Правило Пфлюгера: веретено всегда тянется в направлении наименьшего сопротивления. Правило Бальфура: скорость голобластического дробления обратно пропорциональна количеству желтка (желток затрудняет деление как ядра, так и цитоплазмы). Правило Сакса: клетки обычно делятся на равные части, и плоскость каждого нового деления пересекает плоскость предшествующего деления под прямым углом. Правило Гертвига: ядро и веретено обычно располагаются в центре активной протоплазмы. Ось каждого веретена деления располагается по длинной оси массы протоплазмы. Плоскости деления обычно пересекают массу протоплазмы под прямым углом к ее осям. В результате дробления оплодотворенных яиц любого типа образуются клетки, называемые бластомерами. Когда бластомеров становится много (у земноводных, например, от 16 до 64 клеток), они образуют структуру, напоминающую ягоду малины и названную морулой.



А - Стадия двух бластомеров. Б - Стадия четырех бластомеров. В - Морула, состоящая примерно из 16 бластомеров (возраст зародыша ок. 84 часов). Г - Бластула; более светлая центральная область свидетельствует о формировании бластоцеля (возраст зародыша ок. 100 часов). 1 - Полярные тельца.
Бластула. По мере продолжения дробления бластомеры становятся все мельче и все плотнее прилегают друг к другу, приобретая гексагональную форму. Такая форма повышает структурную жесткость клеток и плотность слоя. Продолжая делиться, клетки раздвигают друг друга и в итоге, когда их число достигает нескольких сотен или тысяч, формируют замкнутую полость - бластоцель, в который поступает жидкость из окружающих клеток. В целом это образование носит название бластулы. Ее формированием (в котором клеточные движения не участвуют) завершается период дробления яйца. В гомолецитальных яйцах бластоцель может располагаться в центре, но в телолецитальных яйцах он обычно бывает сдвинут желтком и располагается эксцентрически, ближе к анимальному полюсу и прямо под бластодиском. Итак, бластула обычно представляет собой полый шарик, полость которого (бластоцель) заполнена жидкостью, но в телолецитальных яйцах с дискоидальным дроблением бластула представлена уплощенной структурой. При голобластическом дроблении стадия бластулы считается завершенной, когда в результате деления клеток соотношение между объемами их цитоплазмы и ядра становится таким же, как в соматических клетках. В оплодотворенном яйце объемы желтка и цитоплазмы совершенно не соответствуют размерам ядра. Однако в процессе дробления количество ядерного материала несколько увеличивается, тогда как цитоплазма и желток только делятся. В некоторых яйцах отношение объема ядра к объему цитоплазмы в момент оплодотворения составляет примерно 1:400, а к концу стадии бластулы - примерно 1:7. Последнее близко к соотношению, характерному и для первичной половой и для соматической клетки. Поверхности поздней бластулы оболочников и земноводных можно картировать; для этого на разные ее участки наносят прижизненные (не наносящие вреда клеткам) красители - сделанные цветные метки сохраняются в ходе дальнейшего развития и позволяют установить, какие органы возникают из каждого участка. Эти участки называют презумптивными, т.е. такими, судьбу которых при нормальных условиях развития можно предсказать. Если, однако, на стадии поздней бластулы или ранней гаструлы переместить эти участки или поменять местами, их судьба изменится. Подобные эксперименты показывают, что до какой-то определенной стадии развития каждый бластомер способен превратиться в любую из множества разнообразных клеток, составляющих организм.



Гаструла. Гаструлой называют стадию эмбрионального развития, на которой зародыш состоит из двух слоев: наружного - эктодермы, и внутреннего - энтодермы. У разных животных эта двуслойная стадия достигается разными способами, поскольку яйца разных видов содержат разное количество желтка. Однако в любом случае главную роль в этом играют перемещения клеток, а не клеточные деления.
Инвагинация. В гомолецитальных яйцах, для которых типично голобластическое дробление, гаструляция обычно происходит путем инвагинации (впячивания) клеток вегетативного полюса, что приводит к образованию двуслойного зародыша, имеющего форму чаши. Первоначальный бластоцель сокращается, но при этом образуется новая полость - гастроцель. Отверстие, ведущее в этот новый гастроцель, называется бластопором (название неудачное, поскольку оно открывается не в бластоцель, а в гастроцель). Бластопор расположен в области будущего анального отверстия, на заднем конце зародыша, и в этой области развивается большая часть мезодермы - третьего, или среднего, зародышевого листка. Гастроцель называют также архентероном, или первичной кишкой, и он служит зачатком пищеварительной системы.
Инволюция. У пресмыкающихся и птиц, телолецитальные яйца которых содержат большое количество желтка и дробятся меробластически, клетки бластулы на очень небольшом участке приподнимаются над желтком и затем начинают вворачиваться внутрь, под клетки верхнего слоя, образуя второй (нижний) слой. Этот процесс вворачивания клеточного пласта называют инволюцией. Верхний слой клеток становится наружным зародышевым листком, или эктодермой, а нижний - внутренним, или энтодермой. Эти слои переходят один в другой, а место, где происходит переход, известно под названием губы бластопора. Крыша первичной кишки у зародышей этих животных состоит из вполне сформировавшихся энтодермальных клеток, а дно - из желтка; дно из клеток образуется позднее.
Деламинация. У высших млекопитающих, в том числе у человека, гаструляция происходит несколько иначе, а именно путем деламинации, но приводит к тому же результату - образованию двуслойного зародыша. Деламинация - это расслоение исходного наружного слоя клеток, приводящее к возникновению внутреннего слоя клеток, т.е. энтодермы.
Вспомогательные процессы. Существуют также дополнительные процессы, сопровождающие гаструляцию. Описанный выше простой процесс - исключение, а не правило. К вспомогательным процессам относятся эпиболия (обрастание), т.е. перемещение клеточных слоев по поверхности вегетативного полушария яйца, и конкресценция --объединение клеток на обширных участках. Один из этих процессов или они оба могут сопровождать как инвагинацию, так и инволюцию.
Результаты гаструляции. Конечный результат гаструляции заключается в образовании двуслойного зародыша. Наружный слой зародыша (эктодерма) образован мелкими, часто - пигментированными клетками, не содержащими желтка; из эктодермы в дальнейшем развиваются такие ткани, как, например, нервная, и верхние слои кожи. Внутренний слой (энтодерма) состоит из почти не пигментированных клеток, сохраняющих некоторое количество желтка; они дают начало главным образом тканям, выстилающим пищеварительный тракт и его производные. Следует, однако, подчеркнуть, что глубоких различий между этими двумя зародышевыми листками не существует. Эктодерма дает начало энтодерме, и если у некоторых форм границу между ними в области губы бластопора можно определить, то у других она практически неразличима. В экспериментах по трансплантации было показано, что различие между этими тканями определяется только их местоположением. Если участки, которые в норме оставались бы эктодермальными и дали бы начало производным кожи, пересадить на губу бластопора, они вворачиваются внутрь и становятся энтодермой, которая может превратиться в выстилку пищеварительного тракта, легкие или щитовидную железу. Часто с появлением первичной кишки центр тяжести зародыша смещается, он начинает поворачиваться в своих оболочках, и в нем впервые устанавливаются передне-задняя (голова - хвост) и дорсо-вентральная (спина - живот) оси симметрии будущего организма.
Зародышевые листки. Эктодерму, энтодерму и мезодерму различают на основании двух критериев. Во-первых, по их местоположению в зародыше на ранних стадиях его развития: в этот период эктодерма всегда расположена снаружи, энтодерма - внутри, а мезодерма, появляющаяся последней, - между ними. Во-вторых, по их будущей роли: каждый из этих листков дает начало определенным органам и тканям, и их нередко идентифицируют по их дальнейшей судьбе в процессе развития. Однако напомним, что в период возникновения этих листков никаких принципиальных различий между ними не существует. В опытах по пересадке зародышевых листков было показано, что первоначально каждый из них обладает потенциями любого из двух других. Таким образом, их разграничение искусственно, но им очень удобно пользоваться при изучении эмбрионального развития. Мезодерма, т.е. средний зародышевый листок, образуется несколькими способами. Она может возникать непосредственно из энтодермы путем образования целомических мешков, как у ланцетника; одновременно с энтодермой, как у лягушки; или путем деламинации, из эктодермы, как у некоторых млекопитающих. В любом случае вначале мезодерма представляет собой слой клеток, лежащих в пространстве, которое первоначально занимал бластоцель, т.е. между эктодермой с наружной и энтодермой с внутренней стороны. Мезодерма вскоре расщепляется на два клеточных слоя, между которыми образуется полость, называемая целомом. Из этой полости в последующем образуются полость перикарда, окружающая сердце, плевральная полость, окружающая легкие, и брюшная полость, в которой лежат органы пищеварения. Наружный слой мезодермы - соматическая мезодерма - образует вместе с эктодермой т.н. соматоплевру. Из наружной мезодермы развиваются поперечнополосатые мышцы туловища и конечностей, соединительная ткань и сосудистые элементы кожи. Внутренний слой мезодермальных клеток называется спланхнической мезодермой и вместе с энтодермой образует спланхноплевру. Из этого слоя мезодермы развиваются гладкие мышцы и сосудистые элементы пищеварительного тракта и его производных. В развивающемся зародыше много рыхлой мезенхимы (эмбриональной мезодермы), заполняющей пространство между эктодермой и энтодермой. У хордовых в процессе развития образуется продольный столбик плоских клеток - хорда, основной отличительный признак этого типа. Клетки хорды происходят из эктодермы у одних животных, из энтодермы у других и из мезодермы у третьих. В любом случае эти клетки уже на очень ранней стадии развития можно отличить от остальных, и расположены они в виде продольного столбика над первичной кишкой. У зародышей позвоночных хорда служит центральной осью, вокруг которой развивается осевой скелет, а над ней - центральная нервная система. У большинства хордовых это чисто эмбриональная структура, и только у ланцетника, круглоротых и пластиножаберных она сохраняется в течение всей жизни. Почти у всех других позвоночных клетки хорды замещаются костными клетками, образующими тело развивающихся позвонков; из этого следует, что наличие хорды облегчает формирование позвоночного столба.
Производные зародышевых листков. Дальнейшая судьба трех зародышевых листков различна. Из эктодермы развиваются: вся нервная ткань; наружные слои кожи и ее производные (волосы, ногти, зубная эмаль) и частично слизистая ротовой полости, полостей носа и анального отверстия. Энтодерма дает начало выстилке всего пищеварительного тракта - от ротовой полости до анального отверстия - и всем ее производным, т.е. тимусу, щитовидной железе, паращитовидным железам, трахее, легким, печени и поджелудочной железе. Из мезодермы образуются: все виды соединительной ткани, костная и хрящевая ткани, кровь и сосудистая система; все типы мышечной ткани; выделительная и репродуктивная системы, дермальный слой кожи. У взрослого животного очень мало таких органов энтодермального происхождения, которые не содержали бы нервных клеток, происходящих из эктодермы. В каждом важном органе содержатся и производные мезодермы - кровеносные сосуды, кровь, часто и мышцы, так что структурная обособленность зародышевых листков сохраняется только на стадии их образования. Уже в самом начале своего развития все органы приобретают сложное строение, и в них входят производные всех зародышевых листков.
ОБЩИЙ ПЛАН СТРОЕНИЯ ТЕЛА
Симметрия. На ранних стадиях развития организм приобретает определенный тип симметрии, характерный для данного вида. Один из представителей колониальных протистов, вольвокс, обладает центральной симметрией: любая плоскость, проходящая через центр вольвокса, делит его на две равноценные половины. Среди многоклеточных нет ни одного животного, обладающего симметрией такого типа. Для кишечнополостных и иглокожих характерна радиальная симметрия, т.е. части их тела расположены вокруг главной оси, образуя как бы цилиндр. Некоторые, но не все плоскости, проходящие через эту ось, делят такое животное на две равноценные половинки. Все иглокожие на личиночной стадии обладают двусторонней симметрией, но в процессе развития приобретают радиальную симметрию, характерную для взрослой стадии. Для всех высокоорганизованных животных типична двусторонняя симметрия, т.е. их можно разделить на две симметричные половины только в одной плоскости. Поскольку такое расположение органов наблюдается у большинства животных, его считают оптимальным для выживания. Плоскость, проходящая по продольной оси от вентральной (брюшной) к дорсальной (спинной) поверхности, делит животное на две половины, правую и левую, являющиеся зеркальными отображениями друг друга. Почти все неоплодотворенные яйца обладают радиальной симметрией, но некоторые теряют ее в момент оплодотворения. Например, в яйце лягушки место проникновения сперматозоида всегда сдвинуто к переднему, или головному, концу будущего зародыша. Эта симметрия определяется только одним фактором - градиентом распределения желтка в цитоплазме. Двусторонняя симметрия становится очевидной, как только в ходе эмбрионального развития начинается формирование органов. У высших животных практически все органы закладываются попарно. Это относится к глазам, ушам, ноздрям, легким, конечностям, большинству мышц, частей скелета, кровеносных сосудов и нервов. Даже сердце закладывается в виде парной структуры, а затем ее части сливаются, образуя один трубчатый орган, который впоследствии перекручивается, превращаясь в сердце взрослой особи с его сложной структурой. Неполное слияние правой и левой половинок органов проявляется, например, в случаях расщелины неба или заячьей губы, изредка встречающихся у человека.









Метамерия (расчленение тела на сходные сегменты). Наибольшего успеха в длительном процессе эволюции достигли животные с сегментированным телом. Метамерное строение кольчатых червей и членистоногих отчетливо видно на протяжении всей их жизни. У большинства позвоночных первоначально сегментированное строение в дальнейшем становится мало различимым, однако на эмбриональных стадиях метамерия у них ясно выражена. У ланцетника метамерия проявляется в строении целома, мышц и гонад. Для позвоночных характерно сегментарное расположение некоторых частей нервной, выделительной, сосудистой и опорной систем; однако уже на ранних стадиях эмбрионального развития на эту метамерию накладывается опережающее развитие переднего конца тела - т.н. цефализация. Если рассмотреть выращенного в инкубаторе 48-часового зародыша цыпленка, то можно выявить у него одновременно и двустороннюю симметрию и метамерию, наиболее отчетливо выраженную на переднем конце тела. Например, группы мышц, или сомиты, сначала появляются в области головы и образуются последовательно, так что наименее развитыми сегментированными сомитами оказываются задние.
Органогенез. У большинства животных одним из первых дифференцируется пищеварительный канал. В сущности, зародыши большинства животных представляют собой трубку, вставленную в другую трубку; внутренняя трубка - это кишка, от ротового до анального отверстия. Другие органы, входящие в систему пищеварения, и органы дыхания закладываются в виде выростов этой первичной кишки. Присутствие крыши архентерона, или первичной кишки, под дорсальной эктодермой вызывает (индуцирует), возможно совместно с хордой, образование на спинной стороне зародыша второй важнейшей системы организма, а именно центральной нервной системы. Это происходит следующим образом: сначала утолщается дорсальная эктодерма и образуется нервная пластинка; затем края нервной пластинки приподнимаются, образуя нервные валики, которые растут навстречу друг другу и в конечном счете смыкаются, - в результате возникает нервная трубка, зачаток центральной нервной системы. Из передней части нервной трубки развивается головной мозг, а остальная ее часть превращается в спинной мозг. Полость нервной трубки по мере разрастания нервной ткани почти исчезает - от нее остается лишь узкий центральный канал. Головной мозг формируется в результате выпячиваний, впячиваний, утолщений и утоньшений передней части нервной трубки зародыша. От образовавшегося головного и спинного мозга берут начало парные нервы - черепные, спинномозговые и симпатические. Мезодерма тоже претерпевает изменения сразу после своего возникновения. Она образует парные и метамерные сомиты (блоки мышц), позвонки, нефротомы (зачатки органов выделения) и части репродуктивной системы. Таким образом, развитие систем органов начинается сразу после образования зародышевых листков. Все процессы развития (при нормальных условиях) происходят с точностью самых совершенных технических устройств.
МЕТАБОЛИЗМ ЗАРОДЫШЕЙ
Зародышам, развивающимся в водной среде, не требуется иных покровов, кроме студнеобразных оболочек, покрывающих яйцо. Эти яйца содержат достаточное количество желтка, чтобы обеспечить зародыш питанием; оболочки до некоторой степени защищают его и помогают сохранять метаболическое тепло и вместе с тем достаточно проницаемы, чтобы не препятствовать свободному газообмену (т.е. поступлению кислорода и выходу диоксида углерода) между зародышем и средой.
Внезародышевые оболочки. У животных, откладывающих яйца на суше или живородящих, зародышу необходимы дополнительные оболочки, защищающие его от обезвоживания (если яйца откладываются на суше) и обеспечивающие питание, удаление конечных продуктов обмена и газообмен. Эти функции выполняют внезародышевые оболочки - амнион, хорион, желточный мешок и аллантоис, образующиеся в процессе развития у всех пресмыкающихся, птиц и млекопитающих. Хорион и амнион тесно связаны между собой по происхождению; они развиваются из соматической мезодермы и эктодермы. Хорион - самая наружная оболочка, окружающая зародыш и три другие оболочки; эта оболочка проницаема для газов и через нее происходит газообмен. Амнион предохраняет клетки зародыша от высыхания благодаря амниотической жидкости, секретируемой его клетками. Желточный мешок, наполненный желтком, вместе с желточным стебельком поставляет зародышу подвергшиеся перевариванию питательные вещества; эта оболочка содержит густую сеть кровеносных сосудов и клетки, вырабатывающие пищеварительные ферменты. Желточный мешок, как и аллантоис, образуется из спланхнической мезодермы и энтодермы: энтодерма и мезодерма распространяются по всей поверхности желтка, обрастая его, так что в конце концов весь желток оказывается в желточном мешке. У пресмыкающихся и птиц аллантоис служит резервуаром для конечных продуктов обмена, поступающих из почек зародыша, а также обеспечивает газообмен. У млекопитающих эти важные функции выполняет плацента - сложный орган, образуемый ворсинками хориона, которые, разрастаясь, входят в углубления (крипты) слизистой оболочки матки, где вступают в тесный контакт с ее кровеносными сосудами и железами. У человека плацента полностью обеспечивает дыхание зародыша, питание и выделение продуктов обмена в кровоток матери. Внезародышевые оболочки не сохраняются в постэмбриональном периоде. У пресмыкающихся и птиц при вылуплении высохшие оболочки остаются в скорлупе яйца. У млекопитающих плацента и остальные внезародышевые оболочки выбрасываются из матки (отторгаются) после рождения плода. Эти оболочки обеспечили высшим позвоночным независимость от водной среды и, несомненно, сыграли важную роль в эволюции позвоночных, особенно в возникновении млекопитающих.
БИОГЕНЕТИЧЕСКИЙ ЗАКОН
В 1828 К. фон Бэр сформулировал следующие положения: 1) наиболее общие признаки любой крупной группы животных появляются у зародыша раньше, чем менее общие признаки; 2) после формирования самых общих признаков появляются менее общие и так до появления особых признаков, свойственных данной группе; 3) зародыш любого вида животных по мере развития становится все менее похожим на зародышей других видов и не проходит через поздние стадии их развития; 4) зародыш высокоорганизованного вида может обладать сходством с зародышем более примитивного вида, но никогда не бывает похож на взрослую форму этого вида. Биогенетический закон, сформулированный в этих четырех положениях, часто истолковывают неверно. Закон этот просто утверждает, что некоторые стадии развития высокоорганизованных форм обладают явным сходством с некоторыми стадиями развития нижестоящих на эволюционной лестнице форм. Предполагается, что это сходство можно объяснить происхождением от общего предка. О взрослых стадиях низших форм ничего не говорится. В данной статье сходство между зародышевыми стадиями подразумевается; в противном случае развитие каждого вида пришлось бы описывать отдельно. По-видимому, в длительной истории жизни на Земле среда играла главную роль в отборе зародышей и взрослых организмов, наиболее приспособленных для выживания. Узкие рамки, создаваемые средой в отношении возможных колебаний температуры, влажности и снабжения кислородом, сокращали разнообразие форм, приводя их к относительно общему типу. В результате возникло то сходство строения, которое лежит в основе биогенетического закона, если речь идет о зародышевых стадиях. Разумеется, у ныне существующих форм в процессе зародышевого развития проявляются особенности, соответствующие времени, месту и способам размножения данного вида. Онтогенез, т.е. развитие отдельной особи, предваряет филогенез, т.е. развитие группы, потому что мутации обычно возникают в половых клетках до оплодотворения. Изменения в эмбрионе естественно предшествуют изменениям взрослой особи, имеющим эволюционное значение, а часто и вызывают их. Новая особь "закладывается" в момент оплодотворения, а зародышевое развитие только подготавливает его к превратностям взрослого существования и созданию будущих зародышей.
См. также
ЦИТОЛОГИЯ ;
НАСЛЕДСТВЕННОСТЬ ;
СИСТЕМАТИКА ЖИВОТНЫХ .
ЛИТЕРАТУРА
Карлсон Б. Основы эмбриологии по Пэттену, т. 1. М., 1983 Гилберт С. Биология развития, т. 1. М., 1993

Энциклопедия Кольера. - Открытое общество . 2000 .

Наука биология включает в себя целый рад различных разделов, потому что сложно одной дисциплиной объять все то многообразие живого и изучить всю ту обширную биомассу, что предоставляет нам наша планета.

Каждая наука, в свою очередь, также имеет определенную классификацию разделов, занимающихся решением каких-либо задач. Таким образом, выходит, что все живое находится под неусыпным контролем человека, познается им, сравнивается, изучается и используется в собственных нуждах.

Одной из таких дисциплин является эмбриология, о которой и пойдет дальше речь.

Эмбриология - биологическая наука

Что такое эмбриология? Чем она занимается и что изучает? Эмбриология - это наука, которая исследует часть жизненного цикла живого организма с момента образования зиготы (оплодотворения яйцеклетки) и до самого его рождения. То есть изучает весь процесс эмбрионального развития в подробностях, начиная с многократного дробления оплодотворенной клетки (стадия гаструлы) и до появления на свет готового организма.

Объект и предмет изучения

Объектом изучения данной науки являются эмбрионы (зародыши) следующих организмов:

  1. Растений.
  2. Животных.
  3. Человека.

Предметом изучения эмбриологии являются следующие процессы:

  1. Деление клетки после оплодотворения.
  2. Формирование трех у будущего эмбриона.
  3. Образование целомических полостей.
  4. Формирование симметрии будущего зародыша.
  5. Появление оболочек вокруг эмбриона, принимающих участие в его формировании.
  6. Образование органов и их систем.

Если взглянуть на данной науки, становится более понятно, что такое эмбриология и чем она занимается.

Цели и задачи

Главная цель, которую ставит передсобой данная наука, - дать ответы на вопросы о появлении жизни на нашей планете, о том, как происходит формирование многоклеточного организма, каким законам органической природы подчиняются все процессы образования и развития зародыша, а также о том, какие факторы и как влияют на это формирование.

Для реализации поставленной эмбриология решает следующие задачи:

  1. Подробное изучение процессов прогенеза (формирования мужских и женских половых клеток - овогенез и сперматогенез).
  2. Рассмотрение механизмов образования зиготы и дальнейшего формирования зародыша до самого момента его выхода наружу (вылупления из яйца, икринки или рождения на свет).
  3. Изучение полного клеточного цикла на уровне молекул, с использованием высокоразрешающего современного оборудования.
  4. Рассмотрение и сравнение механизмов работы клетки в норме и при патологических процессах, с целью получения важных данных для медицины.

Решая вышеизложенные задачи и добиваясь поставленной цели, наука эмбриология сумеет продвинуть вперед человечество в понимании природных законов органического мира, а также найти решение многих проблем в медицине, в частности, связанных с бесплодием и деторождением.

История развития

Развитие эмбриологии как науки идет по сложному и тернистому пути. Начиналось все с двух великих ученых-философов всех времен и народов - Аристотеля и Гиппократа. Причем именно на почве эмбриологии они выступили противниками взглядов друг друга.

Так, Гиппократ был сторонником теории, которая просуществовала очень долго, вплоть до XVII века. Она носила название "преформизм", и суть ее заключалась в следующем. Каждый живой организм только увеличивается в размерах с течением времени, но не формирует внутри себя никаких новых структур и органов. Потому что все органы уже в готовом виде, но очень уменьшенном, находятся в мужской или женской половой клетке (здесь сторонники теории точно не определились во взглядах: одни считали, что все-таки в женской, другие, что в мужской клетке). Таким образом, выходит, что эмбрион просто вырастает со всеми готовыми органами, полученными от отца или матери.

Также более поздними сторонниками этой теории были Шарль Бонне, Марчелло Мальпиги и другие.

Аристотель же, напротив, был противником теории преформизма и сторонником теории эпигенеза. Суть ее сводилась к следующему: все органы и структурные элементы живых организмов формируются внутри зародыша постепенно, под влиянием условий окружающей и внутренней среды организма. Сторонниками этой теории были большинство ученых эпохи Возрождения во главе с Карлом Бэром.

Собственно как наука эмбриология сформировалась в XVIII веке. Именно тогда случился ряд гениальных открытий, которые позволили проанализировать и обобщить весь накопленный материал и объединить его в цельную теорию.

  1. 1759 г. описывает наличие и формирование в процессе эмбрионального развития цыпленка зародышевых листков, которые затем дают начало новым структурам и органам.
  2. 1827 г. Карл Бэр открывает яйцеклетку млекопитающих. Также он издает свой труд, в котором описывает поэтапное формирование зародышевых листков и органов из них в процессе развития птиц.
  3. Карл Бэр выявляет сходство в зародышевом строении птиц, пресмыкающихся и млекопитающих, что позволяет ему сделать вывод о единстве происхождения видов, а также сформулировать свое правило (правило Бэра): развитие организмов происходит от общего к частному. То есть изначально все структуры едины, независимо от рода, вида или класса. И лишь с течением времени происходят индивидуальные видовые специализации каждого существа.

После подобных открытий и описаний дисциплина начинает набирать обороты в развитии. Формируется эмбриология позвоночных и беспозвоночных животных, растений, а также человека.

Современная эмбриология

На современном этапе развития главной задачей эмбриология видит вскрытие сущности механизмов дифференцировки клеток в многоклеточных организмах, выявление особенностей влияния различных реагентов на развитие эмбриона. Также большое внимание уделяется изучению механизмов возникновения патологий и их влияния на развитие зародыша.

Достижениями современной науки, позволяющими более полно раскрыть вопрос о том, что такое эмбриология, являются следующие:

  1. Д. П. Филатов определил механизмы взаимного влияния клеточных структур друг на друга в процессе эмбрионального развития, связал данные эмбриологии с теоретическим материалом эволюционного учения.
  2. Северцов развил учение о рекапитуляции, суть которой заключается в том, что онтогенез повторяет филогенез.
  3. П. П. Иванов создает теорию ларвальных сегментов тела у первичноротых животных.
  4. Светлов формулирует положения, осветившие самые сложные, критические моменты эмбриогенеза.

На этом современная эмбриология не останавливается и продолжает изучать и открывать все новые закономерности и механизмы цитогенетических основ клетки.

Связь с другими науками

Основы эмбриологии тесно связаны с другими науками. Ведь только комплексное использование теоретических данных всех смежных с ней дисциплин позволяет получать действительно ценные результаты и делать важные выводы.

Со следующими науками тесно связана эмбриология:

  • гистология;
  • цитология;
  • генетика;
  • биохимия;
  • молекулярная биология;
  • анатомия;
  • физиология;
  • медицина.

Данные эмбриологии являются важными основами для перечисленных наук, и наоборот. То есть связь двусторонняя, взаимная.

Классификация разделов эмбриологии

Эмбриология - наука, изучающая не только формирование самого эмбриона, но также закладку всех его структур и предшествующее его образованию происхождение половых клеток. Кроме того, в область ее изучения входят и физико-химические факторы, оказывающие влияние на плод. Поэтому такой большой теоретический объем материала позволил сформироваться нескольким разделам данной науки:

  1. Общая эмбриология.
  2. Экспериментальная.
  3. Сравнительная.
  4. Экологическая.
  5. Онтогенетика.

Методы изучения науки

У эмбриологии, как и у других наук, есть свои методы изучения разных вопросов.

  1. Микроскопия (электронная, световая).
  2. Метод окрашенных структур.
  3. Прижизненное наблюдение (отслеживание морфогенетических движений).
  4. Применение гистохимии.
  5. Введение радиоактивных изотопов.
  6. Препарация частей зародыша.

Изучение эмбриона человека

Эмбриология человека является одним из наиболее важных разделов этой науки, так как благодаря многим результатам ее исследований людям удалось решить множество медицинских проблем.

Что конкретно изучает данная дисциплина?

  1. Полный поэтапный процесс образования зародыша у человека, который включает в себя несколько основных стадий - дробление, гаструляция, гистогенез и органогенез.
  2. Формирование различных патологий во время эмбриогенеза и причины их появления.
  3. Влияние физико-химических факторов на эмбрион человека.
  4. Возможности создания искусственных условий для образования зародышей и введение химических агентов для наблюдения за реакциями на них.

Значение науки

Эмбриология дает возможность узнать такие особенности формирования эмбрионов, как:

  • сроки образования органов и их систем из зародышевых листков;
  • самые критические моменты онтогенеза эмбриона;
  • что влияет на их формирование и как можно этим управлять для нужд человека.

Ее исследования совместно с данными других наук позволяют человечеству решать важные задачи общечеловеческого медицинского, а также ветеринарного плана.

Роль дисциплины для людей

Что такое эмбриология для человека? Что она ему дает? Зачем необходимо ее развитие и изучение?

Во-первых, эмбриология изучает и позволяет решать современные проблемы оплодотворения и образования зародышей. Поэтому сегодня разработаны методы искусственного оплодотворения, суррогатного материнства и так далее.

Во-вторых, методы эмбриологии позволяют спрогнозировать все возможные аномалии плода и предотвратить их.

В-третьих, эмбриологи могут сформулировать и применить положения о профилактических мерах по выкидышам и внематочным беременностям и осуществлять контроль над беременными.

Это далеко не все плюсы рассмотренной дисциплины для человека. Она является интенсивно развивающейся наукой, будущее которой еще впереди.

ЭМБРИОЛОГИЯ (греческий embryon утробный плод, зародыш + logos учение) - наука о закономерностях эмбрионального развития организма. Эмбриология человека и живородящих животных изучает период внутриутробного развития организма. Эмбриология яйцекладущих - период развития до вылупления из яйца; Эмбриология амфибий - период развития, заканчивающийся метаморфозом (см.). Выделяют также эмбриологию растений. В настоящее время эмбриология человека и животных изучает не только период внутриутробного развития, но и период постнатального развития, в котором продолжаются процессы гистогенеза, органогенеза и формообразования (например, формирование половой системы).

Вместо термина «эмбриология» предлагались как бы более отвечающие содержанию науки названия «онтогенетика», «механика развития», «динамика развития», «физиология развития» и др. Однако до настоящего времени по-прежнему используется термин «эмбриология».

Предметом эмбриологии животных и человека фактически является изучение всех процессов, происходящих в организме в ходе его развития, включая периоды прогенеза, оплодотворения (см.), эмбрионального развития (см.), плодного развития (см. Плод), а также постнатальный период.

Эмбриология исследует как общие закономерности филогенеза, проявляющиеся в развитии всех многоклеточных животных (от губок и кишечнополостных до позвоночных и человека), так и особенности онтогенетического развития человека и представителей, отдельных типов, классов и видов животных. Изучение развития целостного организма осуществляется путем анализа процесса развития (как целого организма, так и его частей) на разных уровнях; при этом прослеживается формирование органов и систем, изменения тканевых, клеточных и субклеточных структур. Главным теоретическим базисом Э. является биогенетический закон (см.).

Процесс индивидуального развития человека рассматривается как исторически (филогенетически) обусловленный процесс. Определенная последовательность основных этапов эмбрионального развития повторяется у всех многоклеточных животных. Так, формирование осевого комплекса зачатков, хорды, нервной трубки, образование жаберных карманов свидетельствуют об общности происхождения человека и хордовых животных; сегментация и дифференцировка мезодермы, образование у зародыша человека первоначально хрящевого, а затем костного скелета отражают эволюционные изменения скелета в ряду позвоночных; желточный мешок, амнион, аллантоис унаследованы человеком от рептилий; образование плаценты характерно для человека и плацентарных млекопитающих; мощное развитие трофобласта и раннее обособление внезародышевой мезодермы наблюдаются у зародышей человека и человекообразных обезьян. Однако особо раннее развитие и специализация внезародышевой мезодермы, наиболее позднее замыкание переднего конца нервной трубки и ряд других особенностей эмбриогенеза наблюдаются только у человека.

Основоположниками эмбриологии считают Гиппократа и Аристотеля (4 века до нашей эры). Гиппократ и его последователи утверждали предсуществование в отцовском и материнском «семени» всех частей будущего плода (см. Преформизм), то есть процесс развития сводился лишь к количественным изменениям (рост без дифференцировки). Этому взгляду противостояло более прогрессивное учение Аристотеля о последовательном формировании органов в процессе эмбриогенеза (см. Эпигенез). В 1600- 1604 годы Фабриций дал подробное для своего времени описание развития зародыша человека и курицы. Фундаментом для выделения Э. как науки явилась работа У. Гарвея «Исследования о зарождении животных» (1651), в которой яйцо впервые рассматривалось как источник развития всех животных. При этом У. Гарвей, как и Аристотель, считал, что развитие позвоночных происходит в основном путем эпигенеза, утверждая, что ни одна часть будущего плода «не существует в яйце актуально, но все части находятся в нем потенциально». М. Мальпиги (1672), обнаруживший с помощью микроскопа органы зародыша цыпленка на ранних стадиях его развития, примкнул к преформистским представлениям, которые господствовали в науке почти до середины 18 века К. Ф. Вольф в работах «Теория зарождения» (1759) и «Об образовании кишечника у цыпленка» (1768-1769) убедительно доказал, что рост зародыша - это процесс развития. Опровергнув преформистские представления, он залложил основы эмбриологии как науки о развитии. В 1827 году К. М. Бэр открыл и описал яйцеклетки млекопитающих и человека. В своем классическом труде «Об истории развития животных» (1828-1837) он впервые проследил главные черты эмбриогенеза ряда позвоночных, уточнил введенное X. И. Цандером понятие о зародышевых листках как об основных эмбриональных органах и проследил их развитие. Он доказал, что развитие человека происходит в той же последовательности, что и развитие других позвоночных животных. Закон К. М. Бэра (см. Зародыш) о сходстве развития разных классов позвоночных имел огромное значение для прогресса эмбриологии как науки, в связи с этим он по праву считается родоначальником современной эмбриологии.

В создании эволюционной сравнительной эмбриологии, основанной на теории Ч. Дарвина, которая, в свою очередь, имела большое значение для утверждения и дальнейшего обоснования эволюционного учения (см.), исключительная роль принадлежит отечественным исследователям И. И. Мечникову и А. О. Ковалевскому. Они установили, что развитие всех типов беспозвоночных проходит через стадию обособления зародышевых листков, гомологичных зародышевым листкам позвоночных, и это свидетельствует о единстве происхождения всех типов многоклеточных животных. Большой вклад в развитие эволюционной эмбриологии внесли русские ученые А. Н. Северцов, создавший теорию филэмбриогенеза, П. Г. Светлов, разработавший теории критических периодов онтогенеза и метамерии хордовых (см. Зародыш). Конец 19 - начало 20 века ознаменовались активным развитием экспериментальных методов, большая заслуга в разработке которых принадлежит немецким ученым Э. Пфлюгеру, Ру, отечественным ученым Д. П. Филатову, М. М. Завадовскому, П. Иванову, Н. В. Насонову и др. Большой вклад в развитие науки внесли А. А. Заварзин, Н. Г. Хлопин, П. К. Анохин, Б. Л. Астауров, Г. А. Шмидт, Б. П. Токин, А. Г. Кнорре, Д. М. Голуб, А. Н. Студитский, Л. И. Фалин и др.

В зависимости от задач и методов исследования различают общую, сравнительную, экологическую и экспериментальную эмбриологии (см. Эмбриология экспериментальная).

Вначале эмбриология развивалась в основном как морфологическая наука и носила описательный характер (описательная эмбриология). Метод наблюдения и описания позволил установить, что развитие идет от простого к сложному, от общего к частному, от однородного к разнородному. На основании описательных работ, посвященных различным биологическим видам и классам, возникла сравнительная эмбриология, которая позволила выявить определенное сходство между развитием животных и человека. Впоследствии эмбриологи стали изучать не только развитие формы и структуры, но и становление функций органов и тканей. Экологическая эмбриология изучает факторы, обеспечивающие существование зародыша, то есть особенности его развития в определенных условиях окружающей среды и возможности адаптации в случае их изменения.

Современную эмбриологию характеризует комплексный морфофизиологический подход к изучению и трактовке процесса развития. Наряду с методами наблюдения и описания в наст, время широко применяются сложные методы исследования: микроскопические, микрохирургические, биохимические, иммунологические, радиологические и др. Их разнообразие обусловлено тесной связью эмбриологии с другими науками. Эмбриология неотделима от генетики (см. Генетика человека , Медицинская генетика), так как онтогенез (см.) по сути дела отражает реализацию механизма наследственности; тесно связана с цитологией (см.) и гистологией (см.), ибо целостный процесс развития организма основан на совокупности процессов размножения, миграции, дифференцировки, гибели клеток, взаимодействия между клетками. Одна из основных проблем гистологии - учение о гистогенезе - является в то же время частью эмбриологии. Эмбриология изучает процесс морфологической дифференцировки (формирование специализированных клеток) и хим. дифференцировки (хим. организация) клевок, закономерности обменных процессов в развитии организма. На основании тесной взаимосвязи с цитологией, молекулярной биологией и генетикой возникла новая комплексная отрасль биологии - биология развития. Большое значение успехи эмбриологии имели для развития анатомии (см.) и гистологии. Эмбриология, изучая изменения химического состава и обменных процессов развивающихся структур (химическая эмбриология), а также становление функций (эмбриофизиология), использует данные биохимии (см.) и физиологии (см.).

Задачами эмбриологии являются не только объяснение явлений и выявление их закономерностей, но и возможность осуществлять контроль за развитием организма. Так, знания и методы эмбриологии имеют непосредственное приложение в народном хозяйстве, в частности животноводстве, рыбоводстве, шелководстве, используются для изучения влияния окружающей среды на развитие организма, служат основой для проведения работ по интродукции, перестройке биоценозов и др. Наиболее важным для человека является применение достижений эмбриологии в медицине. Медицинская эмбриология все больше выделяется в самостоятельную науку и является одной из теоретических основ профилактической медицины. Разработка медицинских аспектов современной эмбриологии играет важную роль в решении таких проблем, как регуляция рождаемости, бесплодие, трансплантация органов и тканей, опухолевый рост, иммунные реакции организма, физиологическая и репаративная регенерация, реактивность клеток и тканей и др. Исследования в области эмбриологии имеют большое значение в раскрытии патогенеза различных пороков развития (см.). Такие важные проблемы эмбриологии, как рост и дифференцировка клеток, тесно связаны с вопросами регенерации, онкогенеза, воспаления, старения. Борьба с антенатальной и детской смертностью в большой мере зависит от решения кардинальных задач эмбриологии.

В современной эмбриологии большое значение придается исследованию процессов прогенеза, а также поиску путей управления прогенезом и эмбриогенезом, что возможно только при расшифровке механизмов, контролирующих репродуктивную функцию и обеспечивающих гомеостаз зародышей человека и млекопитающих. Эти механизмы представляют собой сложное взаимодействие генетических, эпигеномных, внутренних и внешних факторов, определяющих временную и пространственную последовательность экспрессии генов и, соответственно, цитодифференцировку и морфогенез; важную роль в процессе эмбриогенеза отводят нейроэндокринной и иммунной системам, биологически активным веществам и др. Исследование механизмов регуляции нормального и патологического эмбриогенеза на различных уровнях организации (органном, тканевом, клеточном, хромосомном) может помочь в изыскании путей управления индивидуальным развитием животных и человека, а также в разработке эффективных методов профилактики врожденных пороков развития и патологических состояний. Большое внимание уделяется исследованию системы мать - внезародышевые органы - плод. Изучаются генетические особенности плаценты человека и ее специфические изменения при наследственных заболеваниях; проводится исследование амниотической жидкости с целью диагностики заболеваний в пренатальном и постнатальном периодах. Работы по культивированию in vitro яйцеклеток и зародышей и трансплантации ранних зародышей «приемной матери» открывают перспективы восстановления детородной функции при трубном бесплодии. Эти исследования позволяют понять механизмы оплодотворения и развития в доимплантационном периоде, проанализировать патологию развития, оценить прямое действие на зародыш различных факторов, в том числе лекарственных средств, а также позволяют приблизиться к решению такой общебиологической проблемы, как цитодифференцировка. Проводятся исследования по тестированию лекарственных средств, химических веществ, загрязняющих окружающую среду, с целью выявления их возможного эмбриотоксического и тератогенного действия. Ведется поиск препаратов (витаминов, антитоксинов и др.), купирующих тератогенный эффект того или иного вещества. Исследования в области генной инженерии (см.), направленные на вмешательство в структуру и функцию генома зародышевых клеток, позволяют вызывать изменения генома (см.) зародышей млекопитающих, что в будущем даст возможность получать животных, лишенных нежелательных признаков и обладающих заданными свойствами. Благодаря разработке этих методов появится возможность создавать организмы - продуценты используемых в медицине биологических веществ, таких как гормоны человека, антисыворотки и др., а также моделировать некоторые наследственные болезни человека.

Проблемы эмбриологии в СССР разрабатываются в Институте биологии развития им. Н. К. Кольцова АН СССР, Институте эволюционной морфологии и экологии животных им. А. Н. Северцова АН СССР, Институте экспериментальной медицины АМН СССР. Институте морфологии человека АМН СССР, а также на кафедрах гистологии и эмбриологии ун-тов и мед. ин-тов Москвы, Ленинграда, Новосибирска, Симферополя, Минска, Ташкента и др.

Во многих странах функционируют научные общества анатомов, в которые входят и эмбриологи. В СССР существует Всесоюзное общество анатомов, гистологов и эмбриологов.

В нашей стране издаются журналы, отражающие проблемы эмбриологии: с 1916 года - «Архив анатомии, гистологии и эмбриологии», с 1932 года - «Успехи современной биологии», с 1970 года - «Онтогенез» и др. (подробно см. Анатомия). За рубежом выходят следующие основные журналы, посвященные проблемам эмбриологии: «Archiv fur Entwicklungsmechanik der Organismen», основанный В. Py, «Biological Bulletin», «Journal of Experimental Zoology», «Journal of Embryology and Experimental Morphology», «Developmental Biology» и др.

Начиная с 1949 года регулярно созываются международные конгрессы и конференции по эмбриологии. На XI Международном конгрессе анатомов в Мехико в 1980 году была принята новая редакция эмбриологической номенклатуры (см.), русский вариант которой подготовлен советскими морфологами.

Преподавание эмбриологии в СССР ведется на кафедрах гистологии и эмбриологии медицинских и ветеринарных институтов, на биологических факультетах университетов, на кафедрах анатомии и физиологии педагогических институтов.

Библиогр.:

История - Бляхер Л. Я. История эмбриологии в России (с середины XVIII до середины XIX века), М., 1955; Гинзбург В. В., Кнорре А. Г. и Куприянов В. В. Анатомия, гистология и эмбриология в Петербурге - Петрограде - Ленинграде, Краткий очерк, Л., 1957, библиогр.; Нидхэм Д. История эмбриологии, пер. с англ., М., 1947.

Учебники, руководства, основные труды - Бодемер У. Современная эмбриология, пер. с англ., М., 1971, библиогр.; Браше Ж. Биохимическая эмбриология, пер. с англ., М., 1961, библиогр. ; Волкова О. В. и Пекарский М. И. Эмбриогенез и возрастная гистология внутренних органов человека, М., 1976; Вязов О. Е. Иммунология эмбриогенеза, М., 1962, библиогр.; Дыбан А. П. Очерки патологической эмбриологии человека. Л., 1959; 3уссм а н М. Биология развития, пер. с англ., М., 1977; Иванов П. П. Руководство по общей и сравнительной эмбриологии, Л., 1945; Карлсон Б. Основы эмбриологии по Пэттену, пер. с англ., т. 1- 2, М., 1983; Кнорре А. Г. Краткий очерк эмбриологии человека, Л., 1959; он же, Эмбриональный гистогенез. Л., 1971; Патофизиология внутриутробного развития, под ред. Н. Л. Гармашевой, Л., 1959; Пэттен Б. М. Эмбриология человека, пер. с англ., М., 1959; Станек И. Эмбриология человека, пер. со словацк., Братислава, 1977; Токин Б. П. Общая эмбриология, М. 1977; Фалин Л. И. Эмбриология че ловека, Атлас, М., 1976; An analysis of development, ed. by В. H. Williera. о., Philadelphia - L., 1955; Are у L. B. Developmental anatomy, Philadelphia, 1965; Hamburger V. A manual of experimental embryology, Chicago, 1960; Lang-man J. Medizinische Embry ologie, Stuttgart, 1976; Nelsen О. E. Comparative embryology of the vertebrates, N. Y., 1953; Patten В. M. a. Carlson В. M. Foundations of embryology, N. Y., 1974; Pflugfelder O. Lehrbuch der Ent-wicklungsgeschichte und Entwicklungsphy-siologie der Tiere, Jena, 1962; Toivonen S. Primary embryonic Induction, L., 1962; Schumacher G.-H. Embryonale Entwicklung des Menschen, Stuttgart, 1974; Snell R. S-Clinical embryology for medical students, Boston - Toronto, 1983; ThomasJ. B. Introduction to human embryology, Philadelphia, 1968.

Периодические издания - Архив анатомии, гистологии и эмбриологии, Л.- М., с 1931 (1917-1930 - Русский архив анатомии, гистологии и эмбриологии); Acta embryologiae et morphologiae experi-mentalis. Palermo, с 1957; Archives diatomic, d*hist ologie et d"embryologie, Strasbourg, с 1922; Developmental Biology, N. Y., с 1959; Excerpta medica. Sect. 1. Anatomy, Anthropology, Embryology and Histology, Amsterdam, с 1947; Journal of Embryology and Experimental Morphology, L., с 1953.

О. В. Волкова.