Динамический диапазон (сокращенно - ДД) применительно к фотографии - это способность светочуствительного материала (фотоплёнки, фотобумаги) или прибора (матрицы цифрового фотоаппарата) фиксировать и передавать без искажений весь спектр яркостей и цветов окружающего мира. По крайней мере, ту часть яркостей и цветов, которую воспринимать человеческий глаз.

Сразу хочу заметить, что возможности фотоаппарата значительно уступают возможностям человеческого зрения.

Цифровой фотоаппарат "видит" совсем не то, что выдит человек.
Современный цифровой фотоаппарат способен воспринимать
очень узкий диапазон светов и цветов реального мира.

Цифровой фотоаппарат, даже самая дорогая зеркалка, воспринимает намного меньше оттенков цветов, чем человек, однако он "способен увидеть", то что не воспринимается зрением человека, например часть ультрафиолетового спектра. Т.е. у фотоаппарата смещён диапазон восприятия - так бы сказал физик или биолог:о)

Кроме того, цифровой фотоаппарат не способен одновременно правильно передать как яркие так и тёмные объекты. Здесь бы физик сказал, что у матрицы фотоаппарата узкий динамический диапазон - ДД.

О тчего зависит динамический диапазон (ДД)
современного цифрового фотоаппарата?

В первую очередь динамический диапазон фотоаппарата зависит от характеристик матрицы. Я умышленно не называю конкретные характеристики матрицы потому, что во-первых - это слишком сложно для начинающего фотографа, а во-вторых - нужно ли фотографу это знать вообще? Понятно, что любому фотографу хочется заполучить фотоаппарат с уникально широким ДД, однако каждый производитель фотоаппаратов всячески расхваливает свою продукцию, но убедительных сравнительных тестов я пока нигде не нашёл...

А насколько вообще объективны и важны подобные тесты и сравнения? Полагаю, что во времена рыночной экономики с её жесткой конкуренцией в одной ценовой категории динамический диапазон матриц цифровых фотоаппаратов от разных производителей очень похожи, впрочем как и другие параметры.

Заметить разницу без использования специального оборудования практически нереально, а вашего зрителя прежде всего интересует визуальное восприятие вашего фото-шедевра, но никак уж не характеристики вашего фотоаппарата и, уж тем более, динамический диапазон матрицы, о котором ваш зритель даже и не догадывается... Если я не прав - киньте в меня камень:о)

Но всё-таки, что же делать фотографу, ведь количество сюжетов, укладывающихся в динамический диапазон современных цифровых фотоаппаратов очень мал и перед фотографом всегда стоит выбор - чем пожертвовать при фотосъёмке: деталями в тенях или в ярко освещённых областях кадра?

Пословица о том, что красота требует жертв здесь абсолютно неприемлема - часто смертельно трудно выбрать "жертву" без потери замысла... :о(

Взгляните хотя бы на эти фотографии, абсолютно не претендующие на роль шедевра, но сделанные в одно и тоже время, одним и одним и тем же фотоаппаратом с применением эксповилки, чтобы проиллюстрировать недостаточность ДД при съёмке самого обычного сюжета:

Яркость объектов в кадре на обоих фотографиях не уместилась в ДД матрицы фотоаппарата

Оказывается, в не самый яркий солнечный день (на небе таки есть облака) нелегко получить правильно экспонированный фото-снимок: выбирай фотограф, что тебе важнее - небо или горы? - и всё это из-за слишком узкого динамического диапазона современных цифровых фотоаппаратов:о(

Как расширить динамический диапазон

Конечно, помня о динамическом диапазоне, можно сделать побольше дублей с разной экспозицией, а потом выбрать лучший... но никто не гарантирует, что этот приём сработает - проблема то не в неправильности экспозиции, а в её большой разнице на разных участках кадра! Да и сюжет ждать не будет, особенно если объект съёмки двигается...

Но выход всё же есть: нам поможет...компьютер. Это ещё один камень в сторону противников компьютерной обработки фотографии. Отлично, если ваш фотоаппарат может снимать в RAW формате. Из одного RAW файла можно получить несколько JPEG файлов, каждый из которых будет отвечать за свой участок изображения. не составит большого труда.

Но даже при съёмке в JPEG формате, не всё потеряно. При съёмке пейзажа применяйте , желательно совместно со штативом - это позволит избежать проблем с совмещением разных кадров. Иначе вам придётся потратить достаточно времени, чтобы отретушировать границы переходов частей фотографии.

Если вы фотографировали без эксповилки - можно попробовать сделать несколько дублей исходной фотографии , а потом уже склеить полученные файлы. Здесь главное не перестараться, иначе результат может сильно отличаться от реального изображения.

Слово «фотография» происходит от греческих слов phos и graphe , что означает свет и рисование , соответственно. Таким образом, создание фотографии в самом строгом определении буквально означает «рисовать светом». Но рисование светом может быть достаточно сложным, учитывая количество света, с которым приходится работать!

Иногда вы можете оказаться в ситуации с большим количеством света, например, на открытом воздухе или в хорошо освещенном зале, а в другой раз свет настолько тусклый, что вам приходится создавать свой источник с помощью вспышки или оставлять затвор открытым на продолжительное время. Однако, вполне вероятно, что все закончится тем, что при съемке у вас будет света так же много, как и теней, а потому получить желаемый снимок будет очень сложно. К счастью, существует такой термин, который поможет вам в таких ситуациях – это динамический диапазон. Знание того, что он означает и как влияет на ваши фотографии, поможет в создании таких снимков, какие вы хотите.

Настройки сцены

Динамический диапазон имеет два основных применения в фотографии. Первое относится к сцене, которую вы фотографируете, а второе - более техническое по своей природе и помогает описать атрибуты сенсора камеры. (Это маленький прямоугольный микрочип, который используется камерой для создания изображений, как маленькая квадратик цифровой пленки).

В большинстве случаев фотограф старается сделать изображение с хорошей экспозицией, что означает, что светлые участки не слишком светлые, а темные – не слишком темные. В этом смысле динамический диапазон относится к общему количеству света, полученного в данной сцене. Если вы делаете фотографию с множеством светлых участков, наполненных светом, в сочетании с темными участками, окутанными тенями, то сцена может быть описана как имеющая широкий динамический диапазон (высокую контрастность). Если, однако, сцена освещена таким образом, что она не слишком светлая и не слишком темная, то можно сказать, что она имеет низкий динамический диапазон (низкая контрастность).

Этот снимок гуся имеет низкий динамический диапазон, то есть он равномерно экспонирован без каких-либо участков определенно светлых или темных.

Нет правильного и неправильного

Нет плохих или хороших сцен, но важно знать, когда вы идете фотографировать и в каких условиях освещения, чтобы вы могли планировать в соответствии с ними. Если вы снимаете в середине дня, то, скорее всего, получите очень яркое изображение с множеством теней, потому что солнечный свет интенсивный и находится над головой. Это называется сценой с высоким динамическим диапазоном, так как содержит очень светлые и очень темные элементы. Вы должны знать, как контролировать сцену, а также вашу камеру, чтобы получить желаемый снимок.

Этот снимок гуся был сделан в условиях , которые привели к высокому динамическому диапазону . Некоторые участки очень светлые, а другие скрыты в тенях.

Передайте свое виденье

При съемке важно учитывать динамический диапазон. Понимание ситуации, в которой вы фотографируете, является необходимым условием для получения желаемого результата. Рисуя светом, вы должны понимать, как он воздействует на ваши снимки.

Например, вот портрет, который я сделал на улице в солнечный день. Моя модель была хорошо освещена, но задний план позади нее был слишком ярким. Это привело к тому, что я не был доволен снимком. Внимание зрителя должно быть на ее лице, но яркий задний план отвлекает.

Гистограмма даст вам подсказки о динамическом диапазоне

Взгляд на гистограмму этого изображения подтверждает то, что я понял, взглянув на сцену. Большая часть данных рассредоточена слева и справа. Это означает, что сцена содержит как очень яркие, так и очень темные участки, а, следовательно, имеет широкий динамический диапазон.

Такие фотографии не обязательно неудавшиеся. Некоторые фотографы предпочитают широкий динамический диапазон, создавая ощущение контраста и пронзительности, которых зачастую не хватает в условиях равномерной экспозиции. Лично я не являюсь большим поклонником такого типа изображений, и в данном случае все было легко исправить, лишь немного повернувшись и использовав здание для более ровной экспозиции.

Опять же, я могу взглянуть на гистограмму в Lightroom и увидеть, что данные более не разделены в двух крайних точках, а распределены более равномерно. Кроме того, вы можете использовать режим Live View в вашей камере и видеть гистограмму в реальном времени во время съемки. Если вы видите, что она выглядит как две горы с долиной между ними, то это говорит о том, что сцена получится с гораздо большим контрастом, чем вы можете предпочесть.

HDR – высокий динамический диапазон

Один трюк, который некоторые фотографы используют в последнее время, называется HDR или обработка в высоком динамическом диапазоне. Это способ получить лучшее, комбинируя несколько композиций в одном изображении путем использования только нужных частей. Таким образом, в сцене, где есть очень яркие и темные участки, вы можете взять несколько снимков – недоэкспонированных и переэкспонированных, и объединить их в программе на вашем телефоне или компьютере, и в итоге получить изображение с ровной экспозицией. Единственный недостаток этого заключается в том, что финальное изображение может казаться неправдоподобным и искусственным для человеческих глаз (если техника HDR применена неправильно).

Технологии спасения

Человеческий глаз – это биологическое чудо. Даже современные цифровые камеры не могут приблизиться к тому, чтобы соответствовать нашим собственным окулярным инструментам. Сенсоры цифровых камер сегодня на шаг впереди своих предшественников, которые существовали 10 или даже 5 лет назад, но наши собственные глаза легко их превосходят, когда речь идет о динамическом диапазоне.

Предельный высокий динамический диапазон и проблема, которую он собой несет

В качестве примера попробуйте стать в комнате в солнечный день с большим количеством теней. Это создает сцену с высоким динамическим диапазоном, так как она содержит как очень яркие (за окном), так и очень темные участки (внутри комнаты). Ваши глаза все еще смогут отличить цвета и формы внутри комнаты, а также все, что находится за окном. Но попробуйте сделать фотографию. Вы получите изображение, экспонированное по светам (т.е., на улице) с темной комнатой, либо экспонированное по комнате (т.е., тени), и ничего за окном не будет видно.

Камера экспонировала по светам, оставив комнату в темноте.

Большинство камер передают сцену таким образом. Однако, техника HDR может быть использована, чтобы создать несколько изображений с разными экспозициями, которые можно комбинировать в один снимок с ровной экспозицией.

Камера экспонировала по теням, сделав вид за окном слишком ярким.

Технологии развиваются

Несмотря на то, что наши глаза превосходят любую камеру, в последнее время сенсоры цифровых камер гораздо лучше передают яркие и темные участки сцены, но только самые яркие и самые темные. В этом смысле термин «динамический диапазон» относится не к условиям освещения, а к возможностям сенсора камеры.

Некоторые модели, как Nikon D810 или Canon 5D Mark IV настолько продвинуты, что одно изображение в формате RAW может быть обработано с возможностью восстановить все данные, которые обычно утрачиваются. Например, когда я снимал этот восход, я экспонировал по светам и получил красивое чистое изображение с богатыми цветами на небе, но побочным эффектом было то, что земля стала совсем черной.

Благодаря технологии, заключенной в сенсоре Nikon 750, камера захватила гораздо больше данных, чем вы можете увидеть изначально. Я снимал в RAW при ISO 100, что означает, что я мог использовать преимущество большого количества данных, полученных в этом изображении, и восстановить их из теней.

То же изображение, но со значительно меньшими тенями после обработки в Lightroom .

Это преувеличенный пример и обычно я не рекомендую применять такую сильную обработку. Но я использую его, чтобы проиллюстрировать, какой динамический диапазон содержат современные сенсоры камер. Другой пример, пожалуй, более реалистичный, показывая важность сенсора, способного захватить высокий уровень динамического диапазона.

Первое изображение прямо из камеры (Nikon D7100). Хотя элементы заднего плана довольно хорошо экспонированы, белка и дерево слишком темные. Поскольку сцена сама по себе имеет высокий уровень динамического диапазона, то получить правильную экспозицию довольно сложно. К счастью, я мог использовать Lightroom, чтобы вытянуть большое количество деталей в тенях, которые могли бы быть утрачены, если сенсор имел бы низкий динамический диапазон.

Необработанный снимок с хорошо экспонированным небом и недоэкспонированными объектами.

Несколько щелчков мыши на моем компьютере позволило значительно улучшить оригинал.

Заключение

На протяжении многих лет производители камер были вовлечены в соревнование с тем, чтобы создать продукт, имеющий больше мегапикселей. Но в последнее время эта цифровая гонка вооружений зашла в тупик, так как 20-24 мегапикселя, которыми оснащены практически большинство камер, в высшей степени подходят практически для любой ситуации. Вместо этого фокус сместился на то, чтобы улучшить такие параметры, как ISO и расширить динамический диапазон сенсора. Это будет продолжаться до тех пор, пока сенсоры не станут настолько хороши, чтобы делать качественные фотографии в любых условиях.

Действительно, мы живем в такие удивительные времена, когда наши камеры могут создавать прекрасные картины светом, так сказать, практически в любом свете.

16 ноября 2009 года

Видеокамеры с широким динамическим диапазоном

Видеокамеры с широким динамическим диапазоном (WDR) предназначены для обеспечения качественного изображения при встречной засветке и наличии в кадре как очень ярких, так и очень темных областей и деталей. При этом яркие области не насыщаются, а темные не отображаются слишком темными. Такие камеры обычно рекомендуются для организации наблюдения за объектом, находящимся напротив окон, в освещенном сзади проеме двери или ворот, а также при большом контрасте объектов.

Динамический диапазон видеокамеры обычно определяется как отношение самого яркого фрагмента изображения к самому темному фрагменту того же самого изображения, то есть в пределах одного кадра. Это отношение по-другому называется максимальным контрастом изображения.

Проблема динамического диапазона

К сожалению, реальный динамический диапазон видеокамер строго ограничен. Он существенно у"же динамического диапазона большинства реальных объектов, ландшафтов и даже сцен кино и фотографии. Кроме того, условия применения видеокамер наблюдения в части освещения зачастую далеки от оптимальных. Так, интересующие нас объекты могут быть расположены на фоне ярко освещенных стен и предметов или встречного (контро-вого) света. В этом случае объекты или их детали на изображении будут слишком темными, так как видеокамера автоматически адаптируется к высокой средней яркости кадра. В некоторых ситуациях на наблюдаемой "картинке" могут иметь место яркие пятна со слишком большими градациями яркости, которые трудно передаются стандартными камерами. Например, обычная улица при солнечном освещении и с тенями от домов имеет контраст от 300:1 до 500:1, для темных пролетов арок или ворот с освещенным солнцем фоном контраст достигает 10 000:1, внутренность темной комнаты против окон имеет контраст до 100 000:1.

Ширина результирующего динамического диапазона ограничивается несколькими факторами: диапазонами самого датчика (фотоприемника), обрабатывающего процессора (DSP) и дисплея (видеоконтрольного устройства). Типовые CCD (ПЗС-матрицы) имеют максимальный контраст не более 1000:1 (60 дБ) по интенсивности. Самый темный сигнал ограничен тепловым шумом или "темновым током" датчика. Самый яркий сигнал ограничен суммой заряда, который может быть накоплен в отдельном пикселе. Обычно CCD построены так, что этот заряд составляет приблизительно 1000 темновых зарядов, обусловленных температурой CCD.

Динамический диапазон может быть существенно увеличен для специального применения камер, например для научных или астрономических исследований, путем охлаждения CCD и применения специальных систем считывания и обработки. Однако такие методы, будучи очень дорогими, не могут использоваться широко.

Как указывалось выше, множество задач требует размера динамического диапазона 65-75 дБ (1:1800-1:5600), поэтому при отображении сцены даже с диапазоном в 60 дБ детали в темных областях потеряются в шуме, а детали в ярких областях — из-за насыщения, либо диапазон будет обрезан сразу с двух сторон. Системы считывания, аналоговые усилители и аналого-цифровые преобразователи (АЦП) для видеосигнала в режиме реального времени ограничивают сигнал CCD до динамического диапазона в 8 бит (48 дБ). Такой диапазон может быть расширен до 10-14 бит за счет использования соответствующих АЦП и обработки аналогового сигнала. Однако зачастую это решение оказывается непрактичным.

Другой альтернативный тип схемы использует нелинейное преобразование в виде логарифмической функции или ее аппроксимации для сжатия 60 дБ выходного сигнала CCD до диапазона в 8 бит. Обычно такие методы подавляют детали изображения.

Последний (указанный выше) фактор ограничения — вывод картинки на дисплей. Динамический диапазон для нормального CRT-монитора, работающего в освещенной комнате, составляет около 100 (40 дБ). LCD-монитор еще более "ограничен". Сигнал, сформированный видеотрактом и даже ограниченный до контраста 1:200, будет уменьшен в динамическом диапазоне при показе. Чтобы оптимизировать показ, пользователь часто должен регулировать контраст и яркость монитора. И если он хочет получить изображение с максимальным контрастом, придется пожертвовать частью динамического диапазона.

Типовые решения

Имеются два основных технологических решения, которые используются, чтобы обеспечить видеокамеры расширенным динамическим диапазоном:

  • множественное отображение кадра — видеокамера захватывает несколько полных изображений или его отдельных областей. При этом каждая "картинка" отображает различную область динамического диапазона. После чего камера объединяет эти различные изображения, чтобы воспроизвести единое изображение с расширенным динамическим диапазоном (WDR);
  • использование нелинейных, обычно логарифмических, датчиков — в этом случае степень чувствительности при различных уровнях освещения различна, что позволяет обеспечить широкий динамический диапазон яркости изображения в одном кадре.

Применяются разные комбинации этих двух технологий, но наиболее распространенная — первая.

Для получения одного оптимального изображения из нескольких используется 2 метода:

  • параллельное отображение двумя или более датчиками изображения, сформированного общей оптической системой. В этом случае каждый датчик захватывает различную часть динамического диапазона сцены за счет различного времени экспонирования (накопления), различного оптического ослабления в индивидуальном оптическом тракте или за счет использования датчиков различной чувствительности;
  • последовательное отображение изображения единственным датчиком с различными временами экспонирования (накопления). В крайнем случае производится по крайней мере два отображения: одно с максимальным, а другое — с более коротким временем накопления.

Последовательное отображение, как наиболее простое решение, обычно используется в промышленности. Длительное накопление обеспечивает видимость наиболее темных частей объекта, однако самые яркие фрагменты могут не прорабатываться и даже приводить к насыщению фотоприемника. Картинка, получаемая с малым накоплением, адекватно отображает светлые фрагменты изображения, не прорабатывая темные области, находящиеся на уровне шума. Сигнальный процессор изображения камеры объединяет обе картинки, беря яркие части от "короткой", а темные части от "длительной" картинки. Алгоритм комбинации, позволяющий создавать гладкое изображение без шва, достаточно сложен, и мы не будем здесь его касаться.

Первыми представила концепцию объединения двух цифровых изображений, полученных при разном времени накопления, в единое изображение с широким динамическим диапазоном группа разработчиков во главе с профессором И.И. Зиви из компании "Tech-nion", Израиль. В 1988 г. концепция была запатентована ("Камера широкого динамического диапазона" Y.Y. Zeevi, R. Ginosar и O. Hilsenrath), а в 1993 г. ее применили при создании коммерческой медицинской видеокамеры.


Современные технические решения

В современных камерах для расширения динамического диапазона на основе получения двух изображений в основном применяются матрицы Sony двойного сканирования (Double Scan CCD) ICX 212 (NTSC), ICX213 (PAL) и специальные процессоры для обработки изображения, например SS-2WD или SS-3WD. Примечательно, что такие матрицы невозможно обнаружить в ассортименте SONY и не все производители указывают на их использование. На рис. 1 схематически представлен принцип двойного накопления. Время указано по формату NTSC.

Из диаграмм видно, что если типовая камера накапливает поле 1/60 с (PAL-1/50 с), то камера WDR составляет поле из двух изображений, полученных путем накопления, за 1/120 с (PAL-1/100 с) для мало освещенных деталей и за период от 1/120 до 1/4000 с для сильно освещенных деталей. На фото 1 представлены кадры с разным экспонированием и результат суммирования (обработки) режима WDR.

Эта технология позволяет "довести" динамический диапазон до 60-65 дБ. К сожалению, числовые значения WDR, как правило, приводятся только производителями верхней ценовой категории, остальные же ограничиваются информацией о наличии функции. Имеющаяся регулировка градуирована обычно в относительных единицах. На фото 2 представлен пример сравнительной отработки типовой и камерой WDR встречного света от стеклянной витрины и дверей. Встречаются модели телекамер, в документации на которые указано, что они работают в режиме WDR, но нет упоминания о требуемой специальной элементной базе. В этом случае, естественно, может возникать вопрос, является ли заявленный режим WDR таким, каким мы ожидаем? Вопрос справедлив, поскольку даже в сотовых телефонах уже применяется режим авторегулирования яркости изображения встроенного фотоаппарата, называемый WDR. С другой стороны, встречаются модели с заявленным режимом расширения динамического диапазона, названным как Easy Wide-D или EDR, которые работают с типовыми CCD. Если в данном случае указывается величина расширения, то она не превышает 20-26 дБ. Одним из способов расширения динамического диапазона является применяемая сейчас компанией Panasonic технология Super Dinamic III. Она также основана на двойном экспонировании кадра за 1/60 с (1/50С-PAL) и 1/8000 с (с последующим анализом гистограмм, разделением картинки на четыре варианта с различной гамма-коррекцией и их интеллектуальным суммированием в DSP). На рис. 2 представлена обобщенная структура этой технологии. Подобная система расширяет динамический диапазон до 128 раз (на 42 дБ).

Наиболее перспективной технологией расширения динамического диапазона телекамеры на сегодня является технология Digital Pixel System™ (DPS), разработанная в Стен-фордском университете в 1990-х гг. и запатентованная компанией PIXIM Inc. Основным нововведением для DPS является использование AЦП для переведения величины фотозаряда в ее цифровое значение непосредственно в каждом пикселе сенсора. CMOS(КМОП)-матрицы сенсора препятствуют ухудшению качества сигнала, что увеличивает общее отношение сигнал/шум. Технология DPS позволяет вести обработку сигнала в режиме реального времени.

Технология PIXIM использует метод, известный как мультисемплинг (многократная выборка), что позволяет сформировать изображение высочайшего качества и обеспечить широкий динамический диапазон преобразователя (свет/сигнал). В технологии PIXIM DPS используется пятиуровневый мультисемплинг, это позволяет получать сигнал от сенсора с одним из пяти значений экспозиции. Во время экспонирования производится измерение величины освещенности каждого пикселя кадра (для стандартного видеосигнала — 50 раз в секунду). Система обработки изображения определяет оптимальное время экспонирования и сохраняет полученное значение до того, как произойдет перенасыщение пикселя и прекратится дальнейшее накопление заряда. Рис. 3 поясняет принцип адаптивного накопления. Значение светлого пикселя сохранено при времени экспонирования Т3 (перед насыщением пикселя на 100%). Темный пиксель накапливал заряд более медленно, что требовало дополнительного времени, его значение сохранено при времени Т6. Сохраненные значения (интенсивность, время, уровень шума), измеренные в каждом пикселе, одновременно обрабатываются и преобразуются в высококачественное изображение. Поскольку у каждого пикселя есть свой встроенный АЦП и параметры освещенности измерены и обработаны независимо, то каждый пиксель в действительности действует как отдельная камера.


Системы формирования изображения PIXIM, основанные на технологии DPS, состоят из цифрового сенсора изображения и процессора обработки изображения. В современных цифровых сенсорах используется квантование в 14 и даже в 17 бит. Относительно невысокая чувствительность, как основной недостаток CMOS-технологии, характерна и для DPS. Типовая чувствительность камер этой технологии ~1 лк. Типовое значение отношения сигнал/шум для формата 1/3" составляет 48-50 дБ. Заявляемый максимальный динамический диапазон — до 120 дБ с типовым значением 90-95 дБ. Возможность регулирования времени накопления для каждого пикселя матрицы сенсора позволяет при формировании изображения использовать такой уникальный метод обработки сигнала, как метод выравнивания локальных гистограмм, позволяющий резко повысить информативность изображения. Технология позволяет полностью компенсировать засветку фона, выделить детали, оценить пространственное положение объектов и деталей, находящихся не только на переднем, но и на заднем плане изображения. На фото 3, 4 и 5 приведены кадры, полученные типовой CCD-камерой и камерой PIXIM.

Практика

Итак, можно сделать вывод о том, что сегодня при необходимости вести видеонаблюдение в сложных условиях высококонтрастного освещения можно подобрать телекамеру, достаточно адекватно передающую весь диапазон яркости объектов. Для этого наиболее предпочтительно использование видеокамер с технологией PIXIM. Довольно хорошие результаты обеспечивают системы на основе двойного сканирования. Как компромисс можно рассматривать дешевые телекамеры на основе типовых матриц и электронных систем EWD и многозонной BLC. Естественно, желательно использовать оборудование с оговоренными величинами характеристик, а не только с упоминанием наличия того или иного режима. К сожалению, на практике результаты работы конкретных моделей не всегда соответствуют ожиданиям и рекламным заявлениям. Но это тема для отдельного разговора.

Изображения с расширенным динамическим диапазоном (High dynamic range - HDR) позволяют фотографам отобразить больше тональных деталей, чем камера способна запечатлеть в одном снимке. Новая функция «Слияние в HDR» в Photoshop позволяет фотографу объединить серию экспозиций, снятых с брекетингом, в одно изображение, которое содержит в себе тональные детали из всей серии.

Однако тут есть свои подводные камни: расширение тонального диапазона неизбежно происходит за счёт снижения контрастности отдельных тонов. Благодаря умению использовать HDR в Photoshop вы можете извлечь максимум из вашего динамического диапазона в сложных условиях освещённости, сохранив при этом разумную контрастность.

Мотивация: дилемма динамического диапазона

По мере того как цифровые сенсоры достигают всё большего разрешения и, соответственно, меньших размеров пикселей, динамический диапазон от этого никак не выигрывает. В частности, это заметно при использовании компактных цифровых камер с разрешением порядка 8 мегапикселей, т.к. они более подвержены засветкам или шумам в тенях. Корме того, в некоторых случаях диапазон яркостей больше, чем современные цифровые камеры в состоянии передать.

Но есть и «хорошие новости» - практически любая камера в состоянии охватить большой динамический диапазон, просто не за один снимок. Меняя выдержку, большинство цифровых камер могут изменить количество света, попавшего на сенсор, в 50 000 раз или более. Другими словами, нам нужно сделать кадры с разным динамическим диапазоном и наложить их.

Когда использовать HDR

Я предложил бы использовать HDR, только когда распределение яркости в кадре не может быть скомпенсировано за счет использования градиентного фильтра (GND), т.к. эти фильтры расширяют динамический диапазон, сохраняя при этом локальный контраст. Идеально подходят для применения градиентных фильтров кадры с простой геометрией освещения, такой как линейный переход от света к тени, который часто встречается в пейзажной фотографии (где относительно тёмная земля переходит в яркое небо).

Кадр, в котором яркость не может быть легко скомпенсирована с использованием фильтра GND, показан на примере взгляда из арки.

На снимке видно примерно три тональных области с резкими переходами на границах - соответственно, требуется специальный градиентный фильтр. Глядя на эту картину глазами, мы могли бы различить детали как внутри арки, так и вне её, поскольку наши глаза адаптируются к изменениям яркости. Цель применения HDR в данном случае - лучше представить, что мы могли бы увидеть своими глазами, посредством техники, называемой тональным отображением.

Внутренняя обработка файла HDR

Photoshop создаёт файл HDR, используя информацию EXIF каждого из снимков серии, чтобы определить длину выдержки, диафрагму и чувствительность ISO. В дальнейшем эта информация используется для оценки количества света, полученного из каждой части изображения. Поскольку этот свет может существенно варьироваться по интенсивности, Photoshop создаёт файл HDR, используя для описания каждого из каналов цветов 32 бита. Преимуществом является то, что в файлах HDR эти добавленные биты используются для создания относительно широкой шкалы яркостей, которую можно скорректировать для вашего изображения. Важное отличие состоит в том, что эти добавочные биты используются иначе, чем таковые в 16-битных изображениях, которые всего лишь определяют оттенки более точно. Обычные 8 и 16-битные изображения мы будем далее обозначать как малодиапазонные (low dynamic range - LDR) по сравнению с 32-битными.

Почему бы просто не добавлять больше бит, чтобы определить соответствующий большой динамический диапазон? В обычных файлах форматов LDR гораздо больше бит используется на разницу в светлых тонах, чем в тёмных. В результате по мере увеличения числа бит всё большая их часть будет потрачена на более точное описание цвета вместо расширения динамического диапазона.

Дополнительные биты, которые обеспечивает нам формат HDR, великолепны и позволяют нам по сути отображать практически бесконечный диапазон яркостей. Проблема в том, что дисплей вашего компьютера (или итоговый фотоотпечаток) может передать только ограниченную шкалу яркости. Данная глава соответственно фокусируется на том, как создать файлы HDR и впоследствии преобразовать их в обычное 8 или 16-битное изображение, которое можно посмотреть на экране монитора или отправить на печать. Этот процесс обычно называют тональным отображением.

Подготовка почвы

Поскольку создание HDR-изображения требует серии экспозиций с идентичным позиционированием, важна стабильность штатива. Photoshop имеет функцию, которая пытается выравнивать изображения в случае, если камера перемещалась между снимками, однако наилучшие результаты достигаются, если на неё не рассчитывать.

Не забудьте сделать как минимум три экспозиции, хотя для оптимальной точности рекомендуется пять. Увеличение числа экспозиций позволяет алгоритму HDR лучше оценить, как ваша камера преобразует свет в цифровые значения (кривую чувствительности цифрового сенсора)- создавая более равномерное тональное распределение. Пример с видом из арки лучше решается несколькими промежуточными экспозициями в дополнение к двум показанным ранее.

Важно, чтобы на наиболее тёмной из экспозиций не было засветов в областях, где вы хотите сохранить детали. Наиболее яркая экспозиция должна показывать самые тёмные области изображения с достаточно высокой яркостью, чтобы они были относительно бесшумны и чётко видны. Каждая экспозиция должна быть отделена от соседней одной-двумя ступенями, и в идеале они должны быть получены изменением выдержки, а не диафрагмы или чувствительности ISO. Помните, что каждая ступень диафрагмы означает увеличение (+1 ступень) или сокращение (-1 ступень) пропускаемого света вдвое.

Есть ещё один недостаток HDR-изображений: они требуют относительно статического предмета съёмки в связи с необходимостью получения нескольких независимых экспозиций. Предыдущий пример с океаном на закате, следовательно, был бы не слишком уместен для использования техники HDR, поскольку волны значительно смещались бы между экспозициями.

Создание 32-битного файла HDR в Photoshop

Мы используем Adobe Photoshop, чтобы преобразовать последовательность экспозиций в одно изображение, которое использует тональное отображение для передачи того, что мы могли бы увидеть своими глазами. Прежде чем тональное отображение станет возможно, нам потребуется объединить все экспозиции в один 32-битный файл HDR.

Откройте инструмент HDR (File>Automate>Merge to HDR) и загрузите все экспозиции; для показанного выше примера использовалось четыре снимка. Если снимки не были сделаны со стабильного штатива, на этом шаге может потребоваться включить выравнивание (Attempt to Automatically Align Source Images), что существенно увеличивает время обработки. Нажав «OK», вы вскоре увидите сообщение «Расчёт функции чувствительности камеры» (Computing Camera Response Curves).

Когда компьютер закончит обработку, он покажет окно с комбинированной гистограммой. Photoshop вычисляет точку белого, но в результате его вычислений яркие части изображения зачастую оказываются засвечены. Вы можете сдвинуть точку белого к правой границе пиков гистограммы, чтобы получить все яркие детали. Полученное значение применяется только в целях просмотра, его потребуется определить более точно позже. Нажав «OK», вы получите 32-битное HDR-изображение, которое можно в этот момент сохранить. Учтите, что изображение может в этот момент выглядеть достаточно тёмным; только после преобразования в 16 или 8-битное изображение (с использованием тонального отображения) оно станет более похожим на желаемый результат.

На этом этапе, в виде 32-битного файла HDR, к изображению могут быть применены лишь немногие способы обработки, так что хранить его в таком виде иначе, как в целях архивации, практически бесполезно. Одноа из доступных функций - компенсация экспозиции (Image>Adjustments>Exposure). Вы можете попробовать увеличить экспозицию, чтобы увидеть все скрытые детали в тенях, или уменьшить её, чтобы увидеть все скрытые яркие детали.

Использование тонального отображения HDR в Photoshop

В Adobe Photoshop преобразуем 32-битное HDR-изображение в 16 или 8-битный файл LDR, применив тональное отображение. Это потребует от нас принципиальных решений о типе тонального отображения, в зависимости от предмета съёмки и распределения яркости в фотографии.

Запустите преобразование изображения в обычное 16-битное (Image>Mode>16 Bits/Channel), и вы увидите инструмент преобразования HDR. Можно выбрать один из четырёх методов тонального отображения, как описано ниже.

Экспозиция и гамма

Этот метод даёт вам возможность скорректировать экспозицию и гамму вручную, что служит эквивалентом изменения яркости и контраста, соответственно.

Компрессия яркости

У этого метода нет параметров настройки, он применяет специальную тональную кривую, которая значительно сокращает контраст ярких частей, чтобы высветлить и сохранить контраст в остальном изображении.

Эквализация гистограммы

Этот метод пытается перераспределить гистограмму HDR в диапазон контрастности обычного 16 или 8-битного изображения. В нём применяется специальная тональная кривая, которая растягивает пики гистограммы, так чтобы она стала более однородной. Обычно это наилучшим образом работает для гистограмм, в которых есть несколько относительно узких пиков без пикселей в промежутках.

Локальная адаптация

Наиболее гибкий метод и, пожалуй, наиболее часто используемый фотографами. В отличие от трёх предыдущих, этот метод меняет яркость частей изображения на попиксельной основе (аналогично повышению локального контраста). Тем самым глаз обманывается, полагая, будто контрастность изображения выше, что зачастую критично для потерявших контрастность HDR-изображений. Этот метод позволяет изменять тональную кривую для лучшего соответствия изображению.

Прежде чем использовать любой из этих методов, сперва может быть полезно определить точки белого и чёрного, используя движки на гистограмме изображения. Нажмите на двойную стрелку рядом с пунктом «Тональные кривые и гистограмма» (Toning Curve and Histogram), чтобы получить гистограмму изображения и движки.

Напоследок хотим рассказать о параметрах настройки метода «локальной адаптации», т.к. он, вероятно, является наиболее используемым и обеспечивает максимальную степень свободы.

Тональная иерархия и контрастность изображения

В отличие от трёх остальных методов преобразования, локальная адаптация необязательно сохраняет общую иерархию тонов. Она транслирует интенсивности пикселей не цельной тональной кривой, а с учётом значений окружающих пикселей. Это означает, что в отличие от использования тональной кривой, тона на гистограмме могут быть не просто растянуты и сжаты, но могут и пересекаться в позициях. Визуально это означает, что часть изображения, которая изначально была темнее другой, может получить аналогичную яркость или даже стать ярче - пусть даже не на много.

Очевидным примером случая, когда тональная иерархия сохраняется, является использование градиентного фильтра для расширения динамического диапазона (хотя это не является примером работы локальной адаптации). В этом примере, несмотря на то что морская пена и блестящие камни на переднем плане в действительности темнее, чем поверхность океана на расстоянии, итоговое изображение передаёт океан вдалеке как более тёмный. Ключевая концепция состоит в том, что при переходе к дальней части картины наши глаза адаптируются к изменению яркости (как при взгляде на яркое небо), тогда как на ближней дистанции адаптироваться незачем. Имитация этой характеристики зрения может рассматриваться как цель метода локальной адаптации - в частности, для распределений яркости, которые более сложны, чем простой вертикальный переход, как на берегу океана на закате.

Пример более комплексного распределения яркости показан ниже для трёх изображений статуи. Мы называем контраст на большой части изображения общим, тогда как изменения контраста в малых частях называются локальной контрастностью. Метод локальной адаптации старается сохранить локальную контрастность, снижая общую (аналогично тому, что происходит с примером заката в океане).

На примере выше проиллюстрировано визуально, как локальный и глобальный контраст влияют на изображение. Обратите внимание, как крупномасштабные (глобальные) полосы света и тени преувеличены в случае высокой общей контрастности. Наоборот, в случае с низкой глобальной контрастностью лицо статуи в анфас имеет практически одинаковую яркость с профилем.

Исходное изображение смотрится прекрасно, поскольку все тональные зоны чётко видны и показаны достаточно контрастно, чтобы выглядеть объёмно. Теперь предположим, что мы начали со среднего изображения, которое было бы идеальным вариантом для преобразования в HDR. Тональное отображение методом локальной адаптации наверняка создало бы изображение, похожее на крайнее правое (хотя, возможно, не настолько утрированное), поскольку оно сохранило бы локальную контрастность, уменьшив при этом общую (тем самым сохраняя текстуру тёмных и светлых зон).

Преобразование HDR методом локальной адаптации

Дистанция, которая отличает локальную контрастность от общей, задаётся радиусом. Радиус и порог аналогичны параметрам маски нерезкости, используемой для локального улучшения контрастности. Большая величина порога повышает локальный контраст, но при этом существует риск возникновения дефектов гало, тогда как чрезмерно малый радиус может придать изображению блёклость. Для любого выбранного изображения рекомендуется подбирать оба параметра для получения нужного эффекта, поскольку их идеальное сочетание зависит от изображаемого предмета.

Вдобавок к подбору величин радиуса и порога практически всегда требуется коррекция тональной кривой изображения. Этот подход идентичен описанному в главе об использовании кривых, где малые и плавные изменения в форме кривой практически всегда идеальны. Такая кривая показана для нашего примера с аркой вместе с результатом её применения.

Основная проблема метода локальной адаптации в том, что он не может отличить падающий свет от отражённого. В результате он может ошибочно затемнить натурально-белые текстуры и высветлить более тёмные. Помните об этом, подбирая радиус и порог, так чтобы минимизировать данный эффект.

Даже если изображаемая сцена не требует расширения динамического диапазона, итоговое фото всё же может выиграть от его побочного эффекта: снижения шума в тени. Замечали, что цифровые изображения всегда более шумные в тени, чем в ярких зонах? Происходит это потому, что соотношение сигнал-шум в изображении выше, когда светосигнал сильнее. Вы можете обратить это себе на пользу, объединяя правильно выдержанное изображение с передержанным. Photoshop всегда использует для передачи выбранного тона наиболее выдержанное изображение - таким образом собирая больше света в деталях в тени (при этом без передержки).

© 2014 сайт

Или фотографическая широта фотоматериала – это отношение между максимальным и минимальным значениями экспозиции , которые могут быть корректно запечатлены на снимке. Применительно к цифровой фотографии, динамический диапазон фактически эквивалентен отношению максимального и минимального возможных значений полезного электрического сигнала, генерируемого фотосенсором в ходе экспонирования.

Динамический диапазон измеряется в ступенях экспозиции (). Каждая ступень соответствует удвоению количества света. Так, например, если некая камера имеет динамический диапазон в 8 EV, то это означает, что максимальное возможное значение полезного сигнала её матрицы относится к минимальному как 2 8:1, а значит, камера способна запечатлеть в пределах одного кадра объекты, отличающиеся по яркости не более чем в 256 раз. Точнее, запечатлеть-то она может объекты с любой яркостью, однако объекты, чья яркость будет превышать максимальное допустимое значение выйдут на снимке ослепительно белыми, а объекты, чья яркость окажется ниже минимального значения, – угольно чёрными. Детали и фактура будут различимы лишь на тех объектах, яркость которых укладывается в динамический диапазон камеры.

Для описания отношения между яркостью самого светлого и самого тёмного из снимаемых объектов часто используется не вполне корректный термин «динамический диапазон сцены». Правильнее будет говорить о диапазоне яркости или об уровне контраста, поскольку динамический диапазон – это обычно характеристика измеряющего устройства (в данном случае, матрицы цифрового фотоаппарата).

К сожалению, диапазон яркости многих красивых сцен, с которыми мы сталкиваемся в реальной жизни, может ощутимо превышать динамический диапазон цифровой фотокамеры. В таких случаях фотограф бывает вынужден решать, какие объекты должны быть проработаны во всех деталях, а какие можно оставить за пределами динамического диапазона без ущерба для творческого замысла. Для того чтобы максимально эффективно использовать динамический диапазон вашей камеры, от вас порой может потребоваться не столько доскональное понимание принципа работы фотосенсора, сколько развитое художественное чутьё.

Факторы, ограничивающие динамический диапазон

Нижняя граница динамического диапазона задана уровнем собственного шума фотосенсора. Даже неосвещённая матрица генерирует фоновый электрический сигнал, называемый темновым шумом. Также помехи возникают при переносе заряда в аналого-цифровой преобразователь, да и сам АЦП вносит в оцифровываемый сигнал определённую погрешность – т.н. шум дискретизации.

Если сделать снимок в полной темноте или с крышкой на объективе, то камера запишет только этот бессмысленный шум. Если позволить минимальному количеству света попасть на сенсор, фотодиоды начнут накапливать электрический заряд. Величина заряда, а значит, и интенсивность полезного сигнала, будет пропорциональна числу пойманных фотонов. Чтобы на снимке проступили хоть сколько-нибудь осмысленные детали, необходимо, чтобы уровень полезного сигнала превысил уровень фонового шума.

Таким образом, нижнюю границу динамического диапазона или, иначе говоря, порог чувствительности сенсора формально можно определить как уровень выходного сигнала, при котором отношение сигнал/шум больше единицы.

Верхняя граница динамического диапазона определяется ёмкостью отдельного фотодиода. Если во время экспозиции какой-либо фотодиод накопит электрический заряд предельной для себя величины, то соответствующий перегруженному фотодиоду пиксель изображения получится абсолютно белым, и дальнейшее облучение уже никак не повлияет на его яркость. Это явление называют клиппингом. Чем выше перегрузочная способность фотодиода, тем больший сигнал способен он дать на выходе, прежде чем достигнет насыщения.

Для большей наглядности обратимся к характеристической кривой, которая представляет собой график зависимости выходного сигнала от экспозиции. На горизонтальной оси отложен двоичный логарифм облучения, получаемого сенсором, а на вертикальной – двоичный логарифм величины электрического сигнала, генерируемого сенсором в ответ на это облучение. Мой рисунок в значительной степени условен и преследует исключительно иллюстративные цели. Характеристическая кривая настоящего фотосенсора имеет несколько более сложную форму, да и уровень шума редко бывает столь высок.

На графике хорошо видны две критические переломные точки: в первой из них уровень полезного сигнала пересекает шумовой порог, а во второй – фотодиоды достигают насыщения. Значения экспозиции, лежащие между этими двумя точками, и составляют динамический диапазон. В данном абстрактном примере он равен, как несложно заметить, 5 EV, т.е. камера способна переварить пять удвоений экспозиции, что равнозначно 32-кратной (2 5 =32) разнице в яркости.

Зоны экспозиции, составляющие динамический диапазон неравноценны. Верхние зоны отличаются более высоким отношением сигнал/шум, и потому выглядят чище и детальнее, чем нижние. Вследствие этого верхняя граница динамического диапазона весьма вещественна и ощутима – клиппинг обрубает света при малейшей передержке, в то время как нижняя граница неприметным образом тонет в шумах, и переход к чёрному цвету далеко не так резок, как к белому.

Линейная зависимость сигнала от экспозиции, а также резкий выход на плато являются уникальными чертами именно цифрового фотографического процесса. Для сравнения взгляните на условную характеристическую кривую традиционной фотоплёнки.

Форма кривой и особенно угол наклона сильно зависят от типа плёнки и от процедуры её проявления, но неизменным остаётся главное, бросающееся в глаза отличие плёночного графика от цифрового – нелинейный характер зависимости оптической плотности плёнки от величины экспозиции.

Нижняя граница фотографической широты негативной плёнки определяется плотностью вуали, а верхняя – максимальной достижимой оптической плотностью фотослоя; у обращаемых плёнок – наоборот. Как в тенях, так и в светах наблюдаются плавные изгибы характеристической кривой, указывающие на падение контраста при приближении к границам динамического диапазона, ведь угол наклона кривой пропорционален контрастности изображения. Таким образом, зоны экспозиции, лежащие на средней части графика, обладают максимальным контрастом, в то время как в светах и тенях контраст снижен. На практике разница между плёнкой и цифровой матрицей особенно хорошо заметна в светах: там, где в цифровом изображении света выжжены клиппингом, на плёнке детали всё ещё различимы, хоть и малоконтрастны, а переход к чисто белому цвету выглядит плавным и естественным.

В сенситометрии используются даже два самостоятельных термина: собственно фотографическая широта , ограниченная сравнительно линейным участком характеристической кривой, и полезная фотографическая широта , включающая помимо линейного участка также основание и плечо графика.

Примечательно, что при обработке цифровых фотографий, к ним, как правило, применяется более или менее выраженная S-образная кривая , повышающая контраст в полутонах ценой его снижения в тенях и светах, что придаёт цифровому изображению более естественный и приятный глазу вид.

Разрядность

В отличие от матрицы цифрового фотоаппарата человеческому зрению свойственен, скажем так, логарифмический взгляд на мир. Последовательные удвоения количества света воспринимаются нами как равные изменения яркости. Световые числа можно даже сравнить с музыкальными октавами, ведь двукратные изменения частоты звука воспринимаются на слух как единый музыкальный интервал. По такому принципу работают и другие органы чувств. Нелинейность восприятия очень сильно расширяет диапазон чувствительности человека к раздражителям различной интенсивности.

При конвертировании RAW-файла (не важно – средствами камеры или в RAW-конвертере), содержащего линейные данные, к нему автоматически применяется т.н. гамма-кривая, которая призвана нелинейно повысить яркость цифрового изображения, приводя её в соответствие с особенностями человеческого зрения.

При линейной конверсии изображение получается слишком тёмным.

После гамма-коррекции яркость приходит в норму.

Гамма-кривая как бы растягивает тёмные тона и сжимает светлые, делая распределение градаций более равномерным. В результате изображение приобретает естественный вид, но шум и артефакты дискретизации в тенях неизбежно становятся более заметными, что только усугубляется малым числом уровней яркости в нижних зонах.

Линейное распределение градаций яркости.
Равномерное распределение после применения гамма-кривой.

ISO и динамический диапазон

Несмотря на то, что в цифровой фотографии используется та же концепция светочувствительности фотоматериала, что и в фотографии плёночной, следует понимать, что происходит это исключительно в силу традиции, поскольку подходы к изменению светочувствительности в цифровой и плёночной фотографии различаются принципиально.

Повышение чувствительности ISO в традиционной фотографии означает замену одной плёнки на другую с более крупным зерном, т.е. происходит объективное изменение свойств самого фотоматериала. В цифровой камере светочувствительность сенсора жёстко задана его физическими характеристиками и не может быть изменена в буквальном смысле. При повышении ISO камера изменяет не реальную чувствительность сенсора, а всего лишь усиливает электрический сигнал, генерируемого сенсором в ответ на облучение и соответствующим образом корректирует алгоритм оцифровки этого сигнала.

Важным следствием этого является снижение эффективного динамического диапазона пропорционально повышению ISO, ведь вместе с полезным сигналом усиливается и шум. Если при ISO 100 оцифровывается весь диапазон значений сигнала – от нуля и до точки насыщения, то при ISO 200 уже только половина ёмкости фотодиодов принимается за максимум. С каждым удвоением чувствительности ISO верхняя ступень динамического диапазона как бы отсекается, а оставшиеся ступени, подтягиваются на её место. Именно поэтому использование сверхвысоких значений ISO лишено практического смысла. С тем же успехом можно осветлить фотографию в RAW-конвертере и получить сопоставимый уровень шумов. Разница между повышением ISO и искусственным осветлением снимка заключается в том, что при повышении ISO усиление сигнала происходит до поступления его в АЦП, а значит, шум квантования не усиливается, в отличие от собственных шумов сенсора, в то время как в RAW-конвертере усилению подлежат в том числе и ошибки АЦП. Кроме того, уменьшение диапазона оцифровки означает более точную дискретизацию оставшихся значений входного сигнала.

Кстати, доступное на некоторых аппаратах понижение ISO ниже базового значения (например, до ISO 50), отнюдь не расширяет динамический диапазон, а просто ослабляет сигнал вдвое, что равноценно затемнению снимка в RAW-конвертере. Эту функцию можно даже рассматривать как вредную, поскольку использование субминимального значения ISO, провоцирует камеру на увеличение экспозиции, что при оставшемся неизменным пороге насыщения сенсора повышает риск получить клиппинг в светах.

Истинная величина динамического диапазона

Существует ряд программ вроде (DxO Analyzer, Imatest, RawDigger и пр.) позволяющих измерить динамический диапазон цифрового фотоаппарата в домашних условиях. В принципе, в этом нет большой необходимости, поскольку данные для большинства камер можно свободно найти в интернете, например, на сайте DxOMark.com .

Стоит ли верить результатам подобных испытаний? Вполне . С той лишь оговоркой, что все эти тесты определяют эффективный или, если можно так выразиться, технический динамический диапазон, т.е. отношение между уровнем насыщения и уровнем шума матрицы. Для фотографа же в первую очередь важен полезный динамический диапазон, т.е. количество зон экспозиции, которые действительно позволяют запечатлеть какую-то полезную информацию.

Как вы помните, порог динамического диапазона задан уровнем шумов фотосенсора. Проблема в том, что на практике нижние зоны, формально уже входящие в динамический диапазон, содержат всё ещё слишком много шума, чтобы их можно было с толком использовать. Здесь многое зависит от индивидуальной брезгливости – приемлемый уровень шума каждый определяет для себя сам.

Моё субъективное мнение таково, что детали в тенях начинают выглядеть более-менее прилично при отношении сигнал/шум не меньше восьми. На этом основании я определяю для себя полезный динамический диапазон, как технический динамический диапазон минус примерно три ступени.

К примеру, если зеркальная камера согласно результатам достоверных тестов обладает динамическим диапазоном в 13 EV, что очень неплохо по сегодняшним меркам, то её полезный динамический диапазон будет составлять около 10 EV, что, в общем-то, тоже весьма недурно. Разумеется, речь идёт о съёмке в RAW, с минимальным ISO и максимальной разрядностью. При съёмке в JPEG динамический диапазон сильно зависит от настроек контраста, но в среднем следует отбросить ещё две-три ступени.

Для сравнения: цветные обращаемые фотоплёнки обладают полезной фотографической широтой в 5-6 ступеней; чёрно-белые негативные плёнки дают 9-10 ступеней при стандартных процедурах проявления и печати, а при определённых манипуляциях – вплоть до 16-18 ступеней.

Подытоживая вышесказанное, попробуем сформулировать несколько простых правил, соблюдение которых поможет вам выжать из сенсора вашей камеры максимум производительности:

  • Динамический диапазон цифрового фотоаппарата в полной мере доступен только при съёмке в RAW.
  • Динамический диапазон уменьшается с ростом светочувствительности, а потому избегайте высоких значений ISO, если в них нет острой необходимости.
  • Использование более высокой разрядности для RAW-файлов не увеличивает истинный динамический диапазон, но улучшает тональное разделение в тенях за счёт большего количества уровней яркости.
  • Exposure to the right . Верхние зоны экспозиции всегда содержат максимум полезной информации при минимуме шумов и должны использоваться наиболее эффективно. При этом не стоит забывать и об опасности клиппинга – пиксели, достигшие насыщения, абсолютно бесполезны.

И главное: не стоит излишне переживать по поводу динамического диапазона вашей камеры. С динамическим диапазоном у неё всё в порядке. Ваше умение видеть свет и грамотно управлять экспозицией – намного важнее. Хороший фотограф не станет жаловаться на недостаток фотографической широты, а постарается дождаться более комфортного освещения, или изменит ракурс, или воспользуется вспышкой, словом, будет действовать в соответствии с обстоятельствами. Я вам скажу больше: некоторые сцены только выигрывают из-за того, что не укладываются в динамический диапазон камеры. Часто ненужное обилие деталей просто необходимо спрятать в полуабстрактный чёрный силуэт, делающий фотографию одновременно лаконичнее и богаче.

Высокий контраст это не всегда плохо – нужно лишь уметь с ним работать. Научитесь эксплуатировать недостатки оборудования так же, как и его достоинства, и вы удивитесь, насколько расширятся ваши творческие возможности.

Спасибо за внимание!

Василий А.

Post scriptum

Если статья оказалась для вас полезной и познавательной, вы можете любезно поддержать проект , внеся вклад в его развитие. Если же статья вам не понравилась, но у вас есть мысли о том, как сделать её лучше, ваша критика будет принята с не меньшей благодарностью.

Не забывайте о том, что данная статья является объектом авторского права. Перепечатка и цитирование допустимы при наличии действующей ссылки на первоисточник, причём используемый текст не должен ни коим образом искажаться или модифицироваться.